hence number of images you see $=n=\left(\frac{360}{\theta}-1\right)$ $=4-1=3$

Spherical mirror

- A spherical mirror is part of a spherical reflecting surface. Spherical mirror is of two types :
- Concave mirror
- Convex mirror

Concave Mirror

- When the reflection takes place from inner surface and outer surface is polished, the mirror is known as concave mirror.

Convex Mirror

- When the reflection takes place from outer surface and inner surface is polished, the mirror is known as convex mirror.

where
$P=$ Pole of mirror
$F=$ Principal focus
$C=$ Centre of curvature
$P C=R=$ Radius of curvature
$P F=f=$ Focal length

Sign Conventions

- All distances have to be measured from the pole of the mirror.
- Distances measured in the direction of incident light are positive, and those measured in opposite direction are taken as negative.
- Heights measured upwards and normal to the principal axis of the mirror are taken as positive, while those measured downwards are taken as negative.

Spherical Mirror Formula

- The focal length of a spherical mirror of radius R is given by

$$
f=\frac{R}{2}
$$

- $\quad f($ or $R)$ is negative for concave or converging mirror and positive for convex or diverging mirror.

Transverse or linear magnification

$$
m=\frac{\text { size of image }}{\text { size of object }}=-\frac{v}{u}
$$

- Here -ve magnification implies that image is inverted with respect to object while + ve magnification means that image is erect with respect to object.
- Longitudinal magnification : When an object lies along the principal axis, then its magnification is known as longitudinal magnification. For small object, it is given by

$$
m_{L}=-\frac{d v}{d u}
$$

- Superficial magnification : When a two dimensional object is placed with its plane perpendicular to principal axis, then its magnification is known as superficial magnification or areal magnification and is given by

$$
m_{s}=\frac{\text { area of image }}{\text { area of object }}=m^{2}
$$

- Mirror's formula, $\frac{1}{u}+\frac{1}{v}=\frac{1}{f}$ where

$$
u=\text { distance of object from the pole of the mirror }
$$

$v=$ distance of image from the pole of the mirror.

- Newton's formula is $f^{2}=x y$, where x is distance of object from the focus and y is distance of image from the focus of the mirror.

Mustration 3

Assume that a concave mirror has a focal length of 10 cm . Locate the images for object distances,
(a) 25 cm
(b) 20 cm
(c) 15 cm
(d) 10 cm
(e) 5 cm .

Describe the image in each case.
Soln.: (a) $\frac{1}{v}+\frac{1}{u}=\frac{1}{f}$
$u=-25 \mathrm{~cm}$
and $f=-10 \mathrm{~cm}$
$\Rightarrow \frac{1}{v}+\frac{1}{-25}=\frac{1}{-10}$.
$v=-16.7 \mathrm{~cm}$

$m=\frac{-v}{u}=-\left(\frac{-16.7}{-25}\right)=-0.667$
v is -ve, means image is formed on the same side of the mirror as the object, image is real. The magnification is -ve, implies the image is inverted. The magnification is less than 1 , hence image is diminished.
(b) $u=-20 \mathrm{~cm}, f=-10 \mathrm{~cm} \Rightarrow \frac{1}{v}+\frac{1}{-20}=\frac{1}{-10}$
$\nu=-20 \mathrm{~cm}$
$m=\frac{-v}{u}=-\left(\frac{-20}{-20}\right)=-1$.
The image is real and formed at the same position as the object. When object is at the centre of curvature

