
$\delta=i+e-A$ where $A=r_{1}+r_{2}$
When A and i are small
$\therefore \delta=(\mu-1) A$
In a position of minimum deviation, $\delta=\delta_{m}, i=e$, and $r_{1}=r_{2}=r$
$\therefore \quad i=\left(\frac{A+\delta_{m}}{2}\right)$ and $r=\frac{A}{2}$

- The refractive index of the material of the prism is

$$
\mu=\frac{\sin \left[\frac{\left(A+\delta_{m}\right)}{2}\right]}{\left.\sin \left(\frac{A}{2}\right)\right]}
$$

This is known as prism formula
where A is the angle of prism and δ_{m} is the angle of minimum deviation.

DISPERSION OF LIGHT

- It is the phenomenon of splitting of white light into its constituent colours on passing through a prism. This is because different colours have diffierent wavelengths $\left(\lambda_{R}>\lambda_{T}\right)$. According to Cauchy's formula

$$
\mu=A+\frac{B}{\lambda^{2}}+\frac{C}{\lambda^{4}}
$$

where A, B, C are arbitrary constants. Therefore, μ of material of prism for different colours is different $\left(\mu_{t}>\mu_{R}\right)$. As $\delta=(\mu-1) A$, therefore different colours tum through diffierent angles on passing through the prism. This is the cause of dispersion.

Angular dispersion

- The diffierence in deviation between any two colours is known as angular dispersion.
Angular dispersion $\delta_{V^{\prime}}-\delta_{R}=\left(\mu_{V}-\mu_{R}\right) A$
where μ_{V} and μ_{R} are the refractive index for violet and red rays.
Mean deviation, $\delta=\frac{\delta_{V}+\delta_{R}}{2}$.
Dispersive power. $\omega=\frac{\text { angular dispersion }\left(\delta_{V}-\delta_{R}\right)}{\text { mean deviation }(\delta)}$

$$
\omega=\frac{\mu_{V}-\mu_{R}}{(\mu-1)}
$$

where $\mu=\frac{\mu_{V}+\mu_{R}}{2}=$ mean refractive index

Dispersion without deviation

- Suppose we combine two prisms of refracting angles A and A^{\prime}, and dispersive powers ω and ω^{\prime} respectively in such a way that their refracting angles are reversed with respect to each other.
- For no deviation, the condition is
$\delta+\delta^{\prime}=0$
$(\mu-1) A+\left(\mu^{\prime}-1\right) A^{\prime}=0$ or $A^{\prime}=-\frac{(\mu-1) A}{\left(\mu^{\prime}-1\right)}$
Under this condition, net angular dispersion produced by the combination
$=\left(\delta_{V}-\delta_{R}\right)+\left(\delta_{V}^{\prime}-\delta_{R}^{\prime}\right)=\left(\mu_{V}-\mu_{R}\right) A+\left(\mu_{V}^{\prime}-\mu_{R}^{\prime}\right) A^{\prime}$

Deviation without dispersion

The condition for no dispersion is
$\left(\mu_{V}-\mu_{R}\right) A+\left(\mu_{V}^{\prime}-\mu_{R}^{\prime}\right) A^{\prime}=0$ or $A^{\prime}=-\frac{\left(\mu_{V}-\mu_{R}\right) A}{\left(\mu_{v}^{\prime}-\mu_{R}^{\prime}\right)}$
Under this condition, net deviation produced by the combination is
$=\delta+\delta^{\prime}=(\mu-1) A+\left(\mu^{\prime}-1\right) A^{\prime}$

Mustration 11

A ray of light is incident on one face of a prism at an angle of 60°. The refractive index of the prism is 1.5 and angle of prism is 60°. Find the angle of emergence and the angle of deviation.
Soln. : $\sin r_{1}=\frac{\sin i}{\mu}=\frac{\sin 60^{\circ}}{1.5}=\frac{\sqrt{3}}{2 \times 1.5}=0.577$

$$
\begin{aligned}
& r_{1}=\sin ^{-1}(0.577)=35^{\circ}, r_{2}=A-r_{1}=60^{\circ}-35^{\circ}=25^{\circ} \\
& \sin e=\mu \sin r_{2}=1.5 \sin \left(25^{\circ}\right)=1.5 \times 0.423 \\
& \sin e=0.634 \Rightarrow e=\sin ^{-1}(0.634)=39^{\circ} \\
& \text { Now, } i+e=A+\delta \\
& \Rightarrow \delta=i+e-A=60^{\circ}+39^{\circ}-60^{\circ}=39^{\circ} .
\end{aligned}
$$

Hustration 12

What is the required condition, if the light incident on one face, does not emerge from the other face?
Soln.: For no emergence, $r_{2}>\theta_{c}$
$A-r_{1}>\theta_{c}$
$\sin \left(A-r_{1}\right)>\sin \theta_{c}$
$\sin A \cos r_{1}-\cos A \sin r_{1}>\frac{1}{\mu}$

$\sin A\left[\cos r_{1}\right]-\cos A\left[\frac{\sin i}{\mu}\right]>\frac{1}{\mu}$
$\Rightarrow \mu \sin A \sqrt{1-\sin ^{2} r_{1}}-\cos A \sin i>1$

