is denoted by Z. The total number of protons and neutrons in a nucleus is called its mass number of the element and is denoted by A.
Number of protons in an atom $=Z$
Number of electrons in an atom $=Z$
Number of nucleons in an atom $=A$
Number of neutrons in an atom $=N=A-Z$.

Nuclide

- It is a specific nucleus of an atom which is characterised by its atomic number Z and mass number A. It is represented by $Z^{X^{A}}$ where X is the chemical symbol of the element.

Nuclear Radius

- Nuclear radius $R=R_{0} A^{1 / 3}$
where R_{0} is a constant and A is the mass number.
Nuclear radius is measured in fermi.

$$
1 \mathrm{fin}=10^{-15} \mathrm{~m}
$$

Nuclear Density

- Nuclear density is independent of A and is order of the $10^{17} \mathrm{~kg} \mathrm{~m}^{-3}$.

Isotopes

- Isotopes of an element are the atoms of the element which have the same atomic number but diffierent mass numbers. e.g. ${ }_{1} \mathrm{H}^{3},{ }_{1} \mathrm{H}^{2},{ }_{1} \mathrm{H}^{3}$, are the three isotopes of hydrogen.

Isobars

- Isobars are the atoms of different elements which have the same mass number but different atomic numbers. e.g. ${ }_{11} \mathrm{Na}^{22}$ and ${ }_{10} \mathrm{Ne}^{22}$.

Isotones

- Isotones are the nuclides which contain the same number of neutrons e.g. ${ }_{17} \mathrm{Cl}^{37}$ and ${ }_{19} \mathrm{~K}^{39}$.

Mllustration 5

Given the mass of iron nucleus as 55.85 u and $A=56$, find the nuclear density?
Soln.: $m_{\mathrm{Fe}}=55.85,1 \mathrm{u}=1.66 \times 10^{-27} \mathrm{~kg}$
The density of matter in neutron stars (an astrophysical object) is comparable to this density. This shows that matter in these objects has been compressed to such an extent that they resemble a big nucleus.

$$
\begin{aligned}
& \text { nuclear density }=\frac{\text { mass of nucleus }}{\text { volume of nucleus }} \\
& \qquad=\frac{A \times 1 \mathrm{u}}{\frac{4}{3} \pi R^{3}}=\frac{A \times 1 \mathrm{u}}{\frac{4}{3} \pi\left(R_{0} A^{1 / 3}\right)^{3}} \\
& =\frac{55.85 \times 1.66 \times 10^{-27}}{\frac{4 \pi}{3} \times\left(1.2 \times 10^{-15}\right)^{3}} \times \frac{1}{56}=2.29 \times 10^{17} \mathrm{~kg} \mathrm{~m}^{-3}
\end{aligned}
$$

Illustration 6

(a) Two stable isotopes of lithium ${ }_{3}^{6} \mathrm{Li}$ and ${ }_{3}^{7} \mathrm{Li}$ have respective abundances of 7.5% and 92.5%. These isotopes have masses $6.01512 u$ and $7.01600 u$, respectively. Find the atomic mass of lithium.
(b) Boron has two stable isotopes, ${ }_{5}^{10} \mathrm{~B}$ and ${ }_{5}^{11} \mathrm{~B}$. Their respective masses are 10.01294 u and 11.00931 u , and the atomic mass of boron is 10.811 u . Find the abundances of ${ }_{5}^{10} \mathrm{~B}$ and ${ }_{5}^{11} \mathrm{~B}$.
Soln.: Abundance of ${ }_{3}^{6} \mathrm{Li}$ is 7.5% and abundance of ${ }_{3}^{7} \mathrm{Li}$ is 92.5%
hence atomic mass of lithium
$=\frac{7.5(6.01512 \mathrm{u})+92.5(7.01600 \mathrm{u})}{100}$
Atomic mass of lithium
$A=\frac{45.1134+648.98}{100} u$
$A=6.941 \mathrm{u}$
(b) Let abundance of ${ }_{5}^{10} \mathrm{~B}$ is $x \%$ than abundance of
${ }_{5}^{11} \mathrm{~B}$ will be $(100-x) \%$
Atomic mass of boron

$$
\begin{aligned}
& =\frac{x[10.01294 \mathrm{u}]+(100-x)[11.00931 \mathrm{u}]}{10} \\
& 100 \times 10.811 \mathrm{u}=1100.931 \mathrm{u}-0.99637 x \mathrm{u}
\end{aligned}
$$

Solving we get, $x=\frac{19.831}{0.99637}=19.9$
So, relative abundance of ${ }_{5}^{10} \mathrm{~B}$ isotope $=19.9 \%$
Relative abundance of ${ }_{5}^{11} \mathrm{~B}$ isotope $=80.1 \%$

RADIOACTIVITY

- The phenomenon of spontaneous emission of radiation or particles from the nucleus is called radioactivity. The substances which emit these radiations are called as radioactive substances. It was discovered by Henry Becquerel for atoms of radium. Later it was discovered that many naturally occurring compounds of heavy elements like radium, thorium etc also emit radiations.
- At present, it is known that all the naturally occurring elements having atomic number greater than 82 are radioactive. For example some of them are; radium, polonium, thorium, actinium, uranium, radon etc. Later on Rutherford found that emission of radiation always accompanied by transformation of one element (transmutation) into another. Actually radioactivity is the result of disintegration of an unstable nucleus. Rutherford studied the nature of these radiations and found that these mainly consist of α, β, γ rays.
- $\quad \alpha$-Particles $\left({ }_{2} \mathrm{He}^{4}\right)$
- These carry a charge of $+2 e$ and mass equal to $4 m_{p}$. These are nuclei of helium atoms. The energies of α-particles vary from 5 MeV to 9 MeV and their
velocities vary from 0.01-0.1 times of c (velocity of light). They can be deflected by electric and magnetic fields and have low penetrating power but high ionizing power.
- β-Partacles (- $_{-} e^{*}$)
- These are fast moving electrons having charge equal to $-e$ and mass $m,=9.1 \times 10^{-31} \mathrm{~kg}$. Their velocities vary from 1% to 99% of the velocity of light (c). They can also be deflected by electric and magneric fields. They have low ionizing power but high penetrating power * particles are positrons.
- H -Radiation $\left(\mathrm{y}^{7}\right)$

O These are electromagnetic waves of nuclear origin and of very shert wavelength. They have no charge and no mass. They have maximum penetrating power and minimum ionising power. The energy released in a nuclear reaction is mainly emitted in the form of γ radiation.

BAWS BT RADIDACTIUE DECAY

* The disintegration of a radioactive substance is random and spontaneous.
* Radioactive decay is purely a nuclear phenomenon and is independent of any physical and chemica! conditions.
The radioctive decay follows lirst order kinetics, i.e., the rate of decay is proportional to the number of undecayed atoms in a radioactive substance at any time t. If $d N$ be the number of atoms (nuclei) disintegrating in time $d \hat{t}$, the rate of decay is given as $d N / d t$. From irstorder ofkinetic rate law $\frac{d N}{d t}=-\hat{i N}$, where λ is called as decay or disintegration constant
- Let N_{0} be the number of nuclei at time $i=0$ and N be the number of nuclei after time 3 , then according to integrated irst order rate lavv, we have

$$
N_{t}=N_{6} e^{-x t} \Rightarrow \hat{A} t=\ln \frac{N_{0}}{N_{t}}=2.303 \log \frac{N_{0}}{N_{t}}
$$

- The half life $\left(T_{1 ; 2}\right)$ period of a radioactive substance is defned as the time in which one-half of the radioactive substance is disintegrated. If N_{0} be the number of radioactive nuclei at $i \neq 0$, then in a half life $T_{i, 2}$, the number of nuciei decayed will be $N_{0} / 2$.

$$
\begin{align*}
& N_{t}=N_{0} e^{-2 t} \tag{i}\\
\Rightarrow & \frac{N_{0}}{2}=N_{0} e^{-2 T_{t / 2}} \tag{ii}
\end{align*}
$$

From (i) and (iv), we get

$$
\frac{N_{t}}{N_{0}}=\left(\frac{1}{2}\right)^{1 / T_{1,2}}=\left(\frac{1}{2}\right)^{3}
$$

$n=$ number of half lives

* The mean life $\left(T_{n}\right)$ of a radioactive substance is equal to the sum of life times of all atoms divided by the number of all atoms. It is given by

$$
T_{m}=\frac{1}{\lambda}
$$

The mean lives of a radio active substance are 1620 and 405 years for eemission and -emission respectively. Find out the time duning which three fourth of a sample will decay if it is decaying both the α-emission and β-emission simultaneously.
Stlre: When a substance decays by and β emission simultaneously, the average rate of disintegration $\lambda_{a v}$ is given by
$\lambda_{a v}=\lambda_{\alpha}+\lambda_{k}$
where $\lambda_{0}=$ disinte ation constant fer emission only.
$\lambda_{\beta}=$ disintegration constant for β-emission only.
Mean life is given by

$$
\begin{aligned}
& T_{m}=\frac{1}{\lambda} \\
& \Rightarrow \quad \lambda_{a v}=\lambda_{z}+\lambda_{\beta} \Rightarrow \frac{1}{T_{n}}=\frac{1}{T_{a}}+\frac{1}{T_{\theta}} \\
&=\frac{1}{1520}+\frac{1}{205}=3.08 \times 10^{-3} \\
& \lambda_{a v} t=2.313 \log \frac{100}{25} \\
&\left(3.08 \times 10^{3}\right) t=2.303 \log \frac{100}{25}
\end{aligned}
$$

$$
\Rightarrow \quad\left\{=2.303 \times \frac{1}{3.08 \times 10^{-3}} \log 4=4.50 .17\right. \text { years. }
$$

Saddy Fajan Laws (Group-Displacement Laws)

- When a nuclide emits one α-particle (F_{2}^{+}), its mass number (A) decreases by 4 units and atomic number (Z) decreases by 2 units.

$$
z^{X^{A}} \rightarrow z_{-2} Y^{A-\frac{4}{4}}+{ }_{2}{ }^{H} e^{d}+\text { Energy }
$$

- When a nuclide emits a B-particie, its mass numer remains unchanged bur atomic number increases by one unit.

$$
z^{X^{A}} \rightarrow{ }_{2+1} y^{A}+1.2 e^{0}+\bar{v}+\text { Energy }
$$

where \bar{v} antineutrino.

- In the nucleus, due to conversion of neutron into proton, antimeutrino is produced. It has no clarge or mass, bui has momenturi. When a proton is cenverted to a neutron, a neutron and a +ve β-particle is prodaced, which is called as positron. β rays are electrons and are the antielecirans or positrons.

$$
\begin{aligned}
& a^{1} n^{1} i_{1} y^{1}+{ }_{-1} e^{\prime \prime}+\bar{b} \text { (antineutrino) } \\
& { }_{1} p^{1} \rightarrow n_{1} n^{1}+{ }_{+1} e^{\prime}(\text { positron })+v(\text { neurano })
\end{aligned}
$$

* Antineutrino and neutrino share the energy of elfectrons and positrons. That is the reason why the energy of β is continuous and β rays has a mammun energy.
When a γ particle is produced, both atomic and mass number remain constant.

Actuvity or a padioachive isotope

* The activity of a radioactive substance for radioisotope) means the rate of decay per second or the number of nuclei disintegrating per second. It is generally denoted by A.

