velocities vary from 0.01-0.1 times of c (velocity of light). They can be deflected by electric and magnetic fields and have low penetrating power but high ionizing power.

- $\operatorname{P-Partàcles~(-2*)~}$
- These are fast moving electrons having charge equal to $-e$ and mass $m,=9.1 \times 10^{-31} \mathrm{~kg}$. Their velocities vary from 1% to 99% of the velocity of light (c). They can also be deflected by electric and magne in fields. They have low ionizing power but high penetrating power * particles are positrons.
- y-Radiation $\left.\left(y^{7}\right)^{7}\right)$

O These are electromagnetic waves of nuclear origin and of very shert wavelength. They have no charge and no mass. They have maximum penetrating power and minimum ionising power. The energy released in a nuclear reaction is mainly emitted in the form of γ radiation.

BADIS DT B Binionctur decay

* The disintegration of a radioactive substance is random and spontaneous.
* Radioactive decay is purely a nuclear phenomenon and is independent of any physical and chemica! conditions.
The radioctive decay follows lirst order kinetics, i.e., the rate of decay is proportional to the number of undecayed atoms in a radioactive substance at any time t. If $d N$ be the number of atoms (nuclei) disintegrating in time $d \hat{t}$, the rate of decay is given as $d N / d t$. From irstorder ofkinetic rate law $\frac{d N}{d t}=-\hat{i N}$, where λ is called as decay or disintegration constant
- Let N_{0} be the number of nuclei at time $i=0$ and N be the number of nuclei after time s, then according to integrated irst order rate lavv, we have

$$
N_{t}=N_{6} e^{-x t} \Rightarrow \hat{A} t=\ln \frac{N_{0}}{N_{t}}=2.303 \log \frac{N_{0}}{N_{t}}
$$

- The half life $\left(T_{1 ; 2}\right)$ period of a radioactive substance is defned as the time in which one-half of the radioactive substance is disintegrated. If N_{0} be the number of radioactive nuclei at $i \neq 0$, then in a half life $T_{i, 2}$, the number of nuciei decayed will be $N_{0} / 2$.

$$
\begin{align*}
& N_{t}=T_{0} e^{-2 t} \tag{i}\\
\Rightarrow & \frac{N_{0}}{2}=N_{0} e^{-2 T_{t / 2}} \tag{ii}
\end{align*}
$$

From (i) and (iv), we get

$$
\frac{N_{t}}{N_{0}}=\left(\frac{1}{2}\right)^{1 / T_{1,2}}=\left(\frac{1}{2}\right)^{n}
$$

$n=$ number of half lives

* The mean life $\left(T_{n}\right)$ of a radioactive substance is equal to the sum of life times of all atoms divided by the number of all atoms. It is given by

$$
T_{m}=\frac{1}{\lambda}
$$

The mean lives of a radio active substance are 1620 and 405 years for eemission and -emission respectively. Find out the time duning which three fourth of a sample will decay if it is decaying both the α-emission and β-emission simultaneously.
Stlre: When a substance decays by and β emission simultaneously, the average rate of disintegration $\lambda_{a v}$ is given by
$\lambda_{a v}=\lambda_{\alpha}+\lambda_{k}$
where $\lambda_{0}=$ disinte ation constant fer emission only.
$\lambda_{\beta}=$ disintegration constant for β-emission only.
Mean life is given by

$$
\begin{aligned}
& T_{m}=\frac{1}{\lambda} \\
& \Rightarrow \quad \lambda_{a v}=\lambda_{q q}+\lambda_{\beta} \Rightarrow \frac{1}{T_{r}}=\frac{1}{T_{a}}+\frac{1}{T_{\theta}} \\
&=\frac{1}{1620}+\frac{1}{405}=3.08 \times 10^{3} \\
& \lambda_{a v} t=2.33 \log \frac{10 t}{25} \\
&\left(3.08 \times 10^{3.3}\right) t=2.303 \log \frac{100}{25}
\end{aligned}
$$

$$
\Rightarrow \quad t=2.303 \times \frac{1}{3.08 \times 10^{-3}} \log 4=4.50 .17 \text { years. }
$$

Saddy Fajan Laws (Group-Displacement Laws)

- When a nuclide emits one α-particle (F_{2}^{+}), its mass number (A) decreases by 4 units and atomic number (Z) decreases by 2 units.

$$
z^{X^{A}} \rightarrow z_{-2} Y^{A-\frac{4}{4}}+{ }_{2}{ }^{H} e^{d}+\text { Energy }
$$

- When a nuclide emits a B-particie, its mass numer remains unchanged bur atomic number increases by one unit.

$$
z^{X^{A}} \rightarrow{ }_{2+1} y^{A}+1.2 e^{0}+\bar{v}+\text { Energy }
$$

where \bar{v} antineutrino.

- In the nucleus, due to conversion of neutron into proton, antimeutrino is produced. It has no clarge or mass, bui has momenturi. When a proton is cenverted to a neutron, a neutron and a +ve β-particle is prodaced, which is called as positron. β rays are electrons and are the antielecirans or positrons.

$$
\begin{aligned}
& a^{1} n^{1} i_{1} y^{1}+{ }_{-1} e^{\prime \prime}+\bar{b} \text { (antineutrino) } \\
& { }_{1} p^{1} \rightarrow n_{1} n^{1}+{ }_{+1} e^{\prime}(\text { positron })+v(\text { neurano })
\end{aligned}
$$

* Antineutrino and neutrino share the energy of elfectrons and positrons. That is the reason why the energy of β is continuous and β rays has a mammun energy.
When a γ particle is produced, both atomic and mass number remain constant.

Actuvity or a padioachive isotope

* The activity of a radioactive substance for radioisotope) means the rate of decay per second or the number of nuclei disintegrating per second. It is generally denoted by A.

$$
A=-\frac{d N}{d t}
$$

- If at time $t=0$, the activity of a radioactive substance be A_{0} and after time $t=t \mathrm{~s}$, activity be A_{t} then

$$
\begin{aligned}
& A_{0}=\left[\frac{d N}{d t}\right]_{t=0}=-\lambda N_{0} \\
& A_{t}=\left[\frac{d N}{d t}\right]_{t=t}=-\lambda N_{t} \\
& A_{t}=A_{0} e^{-\lambda t}
\end{aligned}
$$

Unit of Activity

- The activity is measured in terms of Curie (Ci). 1 curie is the activity of 1 g of a freshly prepared sample of radium Ra^{126} ($T_{12}=1602$ years.)
1 curie $=1 \mathrm{Ci}=3.7 \times 10^{10} \mathrm{dps}$ (disintegration per second) 1 dps is also known as 1 Bq (becquerel).
$1 \mathrm{Ci}=3.7 \times 10^{10} \mathrm{~Bq}$

Mustration 8

Radioisotopes of phosphorus P^{32} and P^{35} are mixed in the ratio of $2: 1$ of atoms. The activity of the sample is 2 Ci . Find the activity of the sample after 30 days. $T_{1 / 2}$ of P^{32} is 14 days and $T_{1 / 2}$ of P^{35} is 25 days.
Soln.: Let $A_{0}=$ initial activity of sample.
$A_{10}=$ initial activity of isotope 1 and
$A_{20}=$ initial activity of isotope 2 .

$$
A_{0}=A_{10}=A_{20}
$$

Similarly for final activity (Activity after time t)

$$
\begin{aligned}
A_{t} & =A_{1 t}=A_{2 t} \\
\Rightarrow \quad A_{t} & =A_{10} e^{-\lambda_{t} t}+A_{20} e^{-\lambda_{2} t}
\end{aligned}
$$

Now in the given equation,

$$
\begin{equation*}
A_{0}=2 \mathrm{Ci} \Rightarrow A_{0}=A_{10}+A_{20}=2 \tag{i}
\end{equation*}
$$

Initial ratio of atoms of isotopes $=2: 1$
From definition of activity,

$$
\begin{aligned}
& A=\lambda N \\
\Rightarrow & \frac{A_{10}}{A_{20}}=\frac{\lambda_{1} N_{10}}{\lambda_{2} N_{20}}=\frac{N_{10}}{N_{20}} \times \frac{T_{2}}{T_{1}}
\end{aligned}
$$

where T represents half life

$$
\begin{equation*}
\Rightarrow \frac{A_{10}}{A_{20}}=\frac{2}{1} \times \frac{25}{14}=\frac{50}{14}=\frac{25}{7} \tag{ii}
\end{equation*}
$$

On solving equation (i) and (ii), we get

$$
\begin{aligned}
& A_{20}=\frac{7}{16} \text { and } A_{10}=\frac{25}{16} \\
& A_{t}=A_{10} e^{-\lambda_{1} t}+A_{20} e^{-\lambda_{2} t} \\
& \Rightarrow \quad A_{4}=\frac{25}{16} e^{-\frac{0.693}{14} \times 30}+\frac{7}{16} e^{\frac{0.693}{25} \times 30}
\end{aligned}
$$

Consider the first exponential term:

$$
\begin{aligned}
& \quad e^{-\frac{0.693 \times 30}{14}}=e^{-1.485} \\
& \text { Let } y=e^{-1.485} \Rightarrow \ln y=-1.485 \\
& \Rightarrow \log y=\frac{-1.485}{2.303} \Rightarrow y=\operatorname{antilog}\left(\frac{-1.485}{2.303}\right)
\end{aligned}
$$

So, from above calculations you can derive a general result i.e., $e^{-x}=\operatorname{antilog}\left(\frac{-x}{2.303}\right)$
$A_{t}=\frac{25}{16} \times 0.2265+\frac{7}{16} \times 0.4354=0.5444 \mathrm{Ci}$.

IIFTHation 9

A count- rate meter is used to measure the activity of a given sample. At one instant the meter shows 4750 counts per minute. Five minutes later it shows 2700 counts per minute. Find
(a) decay constant
(b) the half life of the sample.

Soln.: (a) Initial activity $=A_{0}=-\frac{d N}{d t}$ at $t=0$

$$
\text { Final activity }=A_{1}=-\frac{d N}{d t} \text { at } t=t
$$

$$
\left.\frac{d N}{d t}\right|_{t=0}=-\lambda N_{0} \text { and }\left.\frac{d N}{d t}\right|_{t=5}=-\lambda N_{t} \Rightarrow \frac{4750}{2700}=\frac{\grave{N}_{0}}{N_{t}}
$$

Using $\lambda_{t}=2.303 \log \frac{N_{0}}{N_{t}}$

$$
\begin{aligned}
& \Rightarrow \quad \lambda(5)=2.303 \log \left(\frac{4750}{2700}\right) \\
& \Rightarrow \quad \lambda=\frac{2.303}{5} \log \left(\frac{4750}{2700}\right)=0.1129 \min ^{-1}
\end{aligned}
$$

(b) $T_{1 / 2}=\frac{0.693}{0.1129}=6.14 \mathrm{nun}$.

MASS DEFECT AND BINDING ENERGY

- The nucleons are bound together in a nucleus and the energy has to be supplied in order to break apart the constituents into free nucleons. The energy with which nucleons are bound together in a nucleus is called binding energy (B.E.). In order to free nucleons from a bound nucleus, this much of energy ($=$ B.E.) has to be supplied.
- It is observed that the mass of a nucleus is always less than the mass of its constituent (free) nucleons. This difference in mass is called as mass defect and is denoted as Δm.
If $m_{n}=$ mass of neutron and $m_{p}=$ mass of proton
$M(Z, A)=$ mass of bound nucleus
Then, $\Delta m=Z m_{p}+(A-Z) m_{n}-M(Z, A)$
- This mass defect is in form of energy and is responsible for binding the nucleons together. From Einstein's mass-energy relation,

$$
E=\Delta m c^{2}(c \text { speed of light, } m \text { is mass })
$$

\Rightarrow Binding energy $=\Delta m c^{2}$

- Generally:, Δn is measured in amu (u) units. So let us calculate the energy equivalent to 1 u . It is calculated in eV (electron volt, $1 \mathrm{eV}=1.6 \times 10^{-19} \mathrm{~J}$)

$$
\begin{aligned}
E & (\equiv 1 \mathrm{u})=\frac{1 \times 1.67 \times 10^{-27} \times\left(3 \times 10^{8}\right)^{2}}{1.6 \times 10^{-19}} \mathrm{eV} \\
& =931 \times 10^{6} \mathrm{eV}=931 \mathrm{MeV}
\end{aligned}
$$

