$$
P_{\mathrm{ac}}=I_{\mathrm{trns}}^{2}\left(r_{f}+R_{1}\right)=\left(\frac{I_{m}}{\sqrt{2}}\right)^{2}\left(r_{f}+R_{L}\right)
$$

Rectification efinciency
$\eta=\frac{P_{d c}}{P_{\mathrm{ac}}}=\frac{\left(2 I_{m n} / \pi\right)^{2} R_{\mathrm{L}}}{\left(r_{n} / \sqrt{2}\right)^{2}\left(\gamma_{f}+R_{L}\right)} \times 100 \%=\frac{81.2}{1+Y_{j} / R_{L}} \%$
If $r_{f} \ll R_{b}$
Maximum rectification efficiency, $\eta=81.2 \%$

- Form factor

- Form factor $=\frac{I_{\text {mans }}}{I_{\mathrm{dc}}}$
- For half wave rectifier,
$I_{\text {rins }}=\frac{I_{m}}{2}, I_{\mathrm{de}}=\frac{I_{m}}{\pi}$
Form factor $=\frac{I_{m} / 2}{I_{m} / \pi}=\frac{\pi}{2}=1.57$
- For full wave rectifier,

$$
I_{\mathrm{rms}}=\frac{I_{m}}{\sqrt{2}}, I_{\mathrm{dc}}=\frac{2 I_{\mathrm{m}}}{\pi}
$$

Form factor $=\frac{i_{m} / \sqrt{2}}{2 I_{m} / \pi}=\frac{\pi}{2 \sqrt{2}}=1.11$

the a fith wave rectifier circuit operating from 50 Hz mains frequency. What is the findamental frequency in the ripple?
Solsh: 100 Mz .
In full wave rectifier, we get the oufput for the positive and the negative cycles of iuput ac Hence, the frequency of the ripple of the output is twice than that of input ac.

An altarnating veltage of $350 \mathrm{Y}, 60 \mathrm{~Hz}$ is apphied on a fuil wave rectifier. The intmal resistance of each diode is 200 W. If $\pi_{Z}=5 \mathrm{~kW}$, then find
(i) the peak value of output current.
(ii) the value of ontput direct current.
(iii) the output de power.
(iv) the rms value of cutput current.
(v) the efficiency of rectifer.
(vi) the value of peak inverse voltage (PI.W).

Sol. (i) $z_{\text {peak }}=r_{\text {tms }} \times \sqrt{2}=\frac{V_{\text {rms }} \times \sqrt{2}}{\left(R_{L}+2 r_{p}\right)}$
or $I_{0}=\frac{350 \times \sqrt{2}}{(500+400)} \quad \frac{350 \times 1.414}{5400}=0.092 \mathrm{~A}$
(ii) $I_{\mathrm{DC}}=\frac{2 I_{0}}{\pi}=\frac{2 \times 0.092}{3.14}=0.058 \mathrm{~A}$
(iii) $F_{\mathrm{DC}}=I_{D C}^{2} \times R_{L}=(0.058)^{2} \times(5000) \simeq 17 \mathrm{~W}$
(iv) $i_{\mathrm{rms}}=\frac{I_{0}}{\sqrt{2}}=\frac{0.092}{1.41}=0.065 \mathrm{~A}$
(v) Efficiency of reccilier $\eta=\frac{81.6}{1+\frac{F_{P}}{R_{L}}}$

$$
\text { or } n=\frac{81.6}{1+\frac{200}{5000}}=\frac{81.6 \times 25}{26} \text { or } n=78 \%
$$

(vi) PI.V. $=2 E_{0}$

$$
\begin{array}{ll}
\text { or } & W H=2 \sqrt{2} E_{\mathrm{mas}}=2 \sqrt{2} \times 350 \\
\text { or } & F I W \simeq 1000 \mathrm{~V} .
\end{array}
$$

LGHT EMTHIRG DIODE (LED)

* It converis electical energy into light energy.
- It is a heavily doped \bar{f} - n junction which uader forward bias emits sponeneous radiation.
- The F ry characteristics of a LED is similar to that of $S i$ junction diode. But the threshold voltages are much bigher and slightly different for each colour. The reverse breakdown voltages of LEDs are very low, typicaily around 5 V .
- The semiconductor used for fricatiwn of visible LEDs must at least have a band gap of $1.8 \mathrm{e} V$.
- The compound semiconductor gallium arsenide phosphide (GaAsP) is used for making LEDs of dififierent colours.
- GaAs is used formaking infiared LED,
- The symbel of a $L E D$ is shomn in the figure.

PHOTODIODE

- A photodiode is a special type p-n junction tiode fabricated with a triosparent window to allow light to fall on the diode.
- It is operated under reverse bias.
* When it is illuminated with light of photon energy greater than the energy gap of the semiconductor, electronhole pairs are generated in near deplation region.
- The symbol of a phot tiode is shown in the figure beiow.

50LAR EEL

- It converts solar energy into electrical energy.
- A solar cell is basically a - - junction which geaerates emf when solar radiation falls on the $p-n$ junction.
- It works on the same principle (photovoltaic eftect) as the photodiode, except that no extemal bias is applied and the junction area is kept large.

zener diode

* Itwas invented byc. Zener. It is designec to operate. monder reverse bias in the breakdown resion and is used as a volmge regulator. The symbol for Zentr diode is shown in the figue.

Zener Diode as a Voltage Regulator

- The circuit diagram for zener diode as a voltage regulator is shown in the figure below.

TRANSISTOR: STRUCTURE AND ACTION

- A transistor has tbree doped regions forming two $p-n$ junctions between them. There are two types of transistors, as shown in figure.
- $n-p-n$ transistor: Here two segments of n-type semiconductor (emitter and collector) are separated by a segment of p-type semiconductor (base).

○ p-n-p transistor: Here two segments of p-type semiconductor (termed as emitter and collector) are separated by a segment of n-type semiconductor (termed as base).

- Every transistor consists of three regions.
- Emitter is the section on one side of transistor., that supplies charge carriers. It is heavily doped and is always kept forward biased with respect to base, so that it can supply a large number of charge carriers to the base.
- Collector is the section on the other side of transistor, that collects the charge carriers. It is moderately doped but large in size and is always kept in reverse bias with respect to base.
- Base is the middle section of transistor, that forms two $p-r l$ junctions with emitter and collector. It is very thin and lightly doped so as to pass most of the emitter injected charge carriers to the collector.

Circuit Connections of Transistor

- The circuit of a transistor is always joined such as the emitter base circuit is forward biased and collector-base circuit is reversed bias.

Circuit connection for $n p n$ transistor

Circuit connection for pup transistor

Action of n-p-n Transistor

- The forward bias of the emitter-base circuit repels the electrons of emitter towards the base, setting up emitter current I_{E} As the base is very thin and lightly doped, a very few electrons ($\approx 5 \%$) from the emitter combine with the holes of base, giving rise to base current I_{B} and the remaining electrons ($\approx 95 \%$) are pulled by the collector which is at high positive potential. The electrons are finally collected by the +ve terminal of battery $V_{C B}$, giving rise to collector current I_{C}

- As soon as an electron from the emitter combines with a hole in the base region, an electron leaves the negative terminal of the battery $Y_{E B}$ and at the same time, the positive terminal of battery $V_{E B}$ receives an electron from the base. This sets a base current I_{B}. Similarly, corresponding to each electron that goes from collector to positive terminal of $V_{C B}$, an electron enters the emitter from negative terminal of $V_{E B}$. Hence

$$
I_{E}=I_{B}+I_{C} \quad\left[I_{B} \ll I_{C}\right]
$$

Here I_{B} is a small fraction of I_{C} depending on the shape of transistor, thiclmess of base, doping levels, bias voltage, etc.

Action of $p-m-p$ Transistor

- The forward bias of the emitter-base circuit repels the holes of emitter towards the base and electrons of base towards the emitter. As the base is very thin and lightly doped, most of the holes ($\approx 95 \%$) entering it pass on to collector while a very few of them (\because 5%) recombine with the electrons of the base region.

- As soon as a hole combines with an electron, an electron from the negative terminal of the battery $V_{E B}$ enters the base. This sets up a small base current I_{n}. Each hole entering the coliector region combines with an electron from the negative terminal of the battery $F_{C B}$ and gets neuralised. This creates collector current I_{C} Both the base current i_{s} and collector current i_{C} combine to form emitter current I_{E}.
$\therefore I_{E}=I_{i n}+I_{C}$

Sasic Transistor Circuit Configurations

- In a tansister, only three terminals are available, viz., Enitter (\dot{E}), Base (\boldsymbol{E}^{\prime}) and Collector (C). Therefore in circuit, the input/output connections have to be such that one of these $(E, B$ or C) is common to both the input and the output. Accordingly, the transistor can be connected in either of the following three configurations:
Common Emitter (CE), Common Base (CD), Common Collector (CC).

- Common base curremamplificatiori " Q "
de current sain is defined as ratio of output current I_{C} to the input current I_{E}.

$$
\mathrm{a}_{\mathrm{dc}}=\left[\frac{I_{C}}{i_{E}}\right]_{y_{\text {Craiseac }}} \quad\left[\frac{0.5 I_{*}}{I_{E}}\right] \times 0.55
$$

Similarly, ac current gain is defmed as the ratio of change in collector current to the change in emitter curremit

$$
\alpha_{\mathrm{xec}}=\left[\frac{\Delta I_{C}}{\Delta I_{E}}\right]_{V_{\mathrm{csecsc}=\mathrm{m}}}
$$

- Cowmon emitter current amplificadion 'p. dc current gain is defined as ratio of output current I_{C} to the input current I_{B}.

$$
\beta_{c \mathrm{c}}=\left[\frac{I_{C}}{I_{E}}\right]_{I_{\mathrm{cscomec}}} \approx\left[\frac{0.95 I_{E}}{0.05 I_{E}}\right] \approx 1
$$

Similatly a.c. curtent gaim is defined as the ratio of change in collect tre current to the change in base canrent.

$$
\beta_{\mathrm{ac}}=\left[\frac{\Delta \Lambda_{C}}{\left[I_{B}\right.}\right]_{V_{c e q \times \pi n s}}
$$

- Relation between a and

We know

$$
\begin{gathered}
I_{E}=I_{B}+I_{C} \\
\frac{I_{E}}{I_{C}}=\frac{I_{B}}{I_{C}}+1 \\
\frac{1}{\alpha}=\frac{1}{\beta}+1 \\
\text { So, }=\frac{1}{1+\beta} \\
B=\frac{\alpha}{1-\alpha}
\end{gathered}
$$

7hastratid 4

The curreat gain of a mansistor in common emitter configuration is 70 . If emitter current is 8.8 mA , then find
(i) base current.
(ii) collector current.
(iii) the curyent gain in common base configuration.

Solra: Current gain, $\beta=\frac{I_{C}}{I_{B}}, I_{E}=I_{B}+I_{O}$
(i)

$$
\begin{array}{ll}
I_{C}=I_{B} & \text { or } I_{C}=7 I_{B} \\
\text { Since } Y_{E}=I_{B}+I_{C} & \text { or } I_{E}=I_{B}+
\end{array}
$$

$$
\text { or } L_{B}=7 \tilde{H}_{B}
$$

$$
\therefore \quad S_{B}=\frac{I_{E}}{71}=\frac{8.8}{71}=0.124 \mathrm{~mA}
$$

(ii) Collector current $=I_{C}$
$I_{C}=71 l_{B} \quad$ or $I_{C}=70 \times 0.124=8.68 \mathrm{~mA}$
(ii) Current gain in common base conifguration

$$
:=\frac{\beta}{1+\beta} \quad \text { or } \quad \varepsilon=\frac{70}{71}=0.986
$$

Input Characteristics of a Transistor

- The variation of the input current with the input voltage for a given output voltage is known as input characteristics of a transistor.

Output Characteristics of a Transistor

- The variation of the output current with the output voltage for a given input current is known as output characteristics of a transistor.

Transistor as a Switch

- When the transistor is used in the cut off region or saturation region, it acts as a switch.

Transistor as an Amplifier

- When the transistor is used in the active region, it acts as an amplifier.

Common Emitter Amplifier

- In the common emitter transistor amplifier, the input signal voltage and the output collector voltage are 180° out of phase.

dc Current Gain

- It is defined as the ratio of the collector current $\left(I_{c}\right)$ to the base current $\left(I_{B}\right)$.

$$
\beta_{\mathrm{dc}}=\frac{I_{C}}{I_{B}}
$$

ac Current Gain

- It is defined as ratio of change in collector current $\left(\Delta I_{C}\right)$ to the change in base current $\left(\Delta I_{B}\right)$.

$$
\beta_{\mathrm{ac}}=\frac{\Delta I_{\mathrm{C}}}{\Delta I_{B}}
$$

Voltage Gain

- It is defined as the ratio of output voltage to the input voltage.

$$
A_{v}=\frac{V_{o}}{V_{i}}=-\beta_{\mathrm{ac}} \times \frac{R_{o}}{R_{i}}
$$

where R_{0} and R_{i} are the output and input resistances. -ve sign represents that output voltage is opposite in phase with the input volmage.

Power Gain

- It is defined as the ratio of the output power to the input power.

$$
\begin{aligned}
A_{p} & =\frac{\text { output power }\left(P_{o}\right)}{\text { input power }\left(P_{i}\right)} \\
& =\beta_{x} \times A_{v}
\end{aligned}
$$

Note : Voltage gain $($ in dB$)=20 \log _{10} \frac{V_{o}}{V_{i}}$

$$
=20 \log _{10} A_{v}
$$

Power gain $($ in dB $)=10 \log \frac{P_{o}}{P_{i}}$

Thistration 8

A transistor having $\alpha=0.99$ is used in a common base amplifier. If the load resistance is $4.5 \mathrm{k} \Omega$ and the dynamic resistance of the emitter junction is 50Ω, find
(i) voltage gain
(ii) power gain

Sol. (i) Voltage gain, $A_{V}=\frac{\alpha R_{L}}{R_{e}}$
or $A_{V}=\frac{0.99 \times 4500}{50}=89.1$
(ii) Power gain $=$ Current gain \times Voltage gain or $A_{P}=0.99 \times 89.1$ or $A_{P}=88.2$

LOGIC GATES

- A digital circuit with one or more input signals but only one output signal is known as logic gate.
- The logic gates are the building blocks of a digital system. Each logic gate follows a certain logical relationship between input and output voltage.
- There are three basic logic gates :
- OR gate
- AND gate
- NOT gate

Truth Table

- It is a table that shows all possible input combinations and the corresponding output combinations for a logic gate.
OR gate
- An OR gate hastwo or more inputs but only one output.
- It is called OR gate because the output is high if any or all the inputs are high.
- The logic symbol of OR gate is

- The truth table for OR gate is

Input		Output
A	B	Y
0	0	0
0	1	1
1	0	1
1	1	1

- The Boolean expression for OR gate is
$Y=A+B$
AND gate
- An AND gate has two or more inputs but only one output.
- It is called AND gate because output is high only when all the inputs are high.
- The logic symbol of AND gate is

- The truth table for AND gate is

Input		Output
A	B	Y
0	0	0
0	1	0
1	0	0
1	1	1

- The Boolean expression f $A N D$ gate is $Y=A \cdot B$
NOT gate
- The NOT gate is the simplest of all logic gates. It has only one input and one output.
- NOT gate is also called inverter because it inverts the input.
- The logic symbol of NOT gate is

- The truth table for NOT gate is

Inpur	Oriput
A	Y
0	1
1	1

* The Roolean expression Sor NOT gate is

$$
Y=\bar{A}
$$

NANT gate

- It is an AN gate followed by a NOT gate.
- The logic symbol for NAND gate is

- The truth table for NAND gate is

mpuat	Ouput
$4 \mid$ B	$\hat{\chi}$
0 1	1
011	1-1
110	1
111	0

- The Beclean expression for NAN gate is

$$
Y=\overline{A \cdot B}
$$

NOR gate

- In is an OR gate followed by a NOT gate.
- The logic symbol or NOR gate is

* The trath table for NOR gate is

A	1	1	C
(ii)	1	1	1
(ii)	0	1	1
(iii)	1	1	1

- The Boolean expression for NOR gate is

$$
Y=\overline{A+B}
$$

What must be the input to get an output $Y=1$ from the circuit shown in figue?

Soln.: It is a combination of OR and AND gate. There can be threa schemes for getting output $=1$.
(a)

A	B	C
1	\bullet	1
\bullet	1	1
1	1	1

WTMHX

The following configuration of gate is equivalent to which gate? Write its thath table

Seln:: Output of $G_{1}=A+B$
Oatent of $G_{2}=\overline{A \cdot B}$
Output of $G_{3}=(A+B) \cdot \overline{A \cdot B}=(A+B) \cdot(\bar{A}+\bar{B})$

$$
=A \cdot \bar{B}+\bar{A} \cdot B
$$

It represents $X O R$ gate.

Truta Table		
A	B	Y
0	1	1
0	1	1
1		1
1	1	0

Two inputs of NAND gates are shorted. What gate it is equivalent to?
Soin: When two inputs of NAN gate are shoned, it is denoted by the Boolean expression $Y ; \overline{A \cdot A}=A$ It is, therefore, equivalent to NOT gate.

