Physical World and Measurement

SCOPE AND EXCITEMENT OF PHYSICS

The scope of physics is very wide. It covers an immense range of natural phenomena.

- Distances extend from small dimensions of subatomic particles to the very large separation between galaxies of the universe. e.g. the radius of atomic nucleus is about $10^{-14} \mathrm{~m}$ while radius of universe is about $10^{25} \mathrm{~m}$.
- Time intervals encounted in physical world vary over a large range. e.g. time taken by light to cross nuclear dimension is about $10^{-22} \mathrm{sec}$ while the life of sun is about $10^{18} \mathrm{sec}$.
- Mass of an electron is $10^{-30} \mathrm{~kg}$ whereas mass of the universe is about $10^{55} \mathrm{~kg}$.
Physics provides answers to exciting questions such as, why is sky blue? Why is glass transparent? etc.

PMYSICS, TECHMOLOGY AMD SOCIRTY

Physics is the kowledge of material universe for its own sake, whereas technology transfers the knowledge of physics into practical shape for the well being of human race. For example,

- Faraday's law of electromagnetic induction enabled the development of electric generator, electric motor, transformer etc.
- Discovery of nuclear fission led to development of nuclear power plants.
- Laws of thermodynamics led to development of heat engines.
- Physics has made both positive and negative impacts on the society. On the one hand we use aeroplanes, television, computers etc. but on the other hand we blame technologies for widespread pollution, resource depletion etc.

NATURE OF PHYYSRAR LAMS

Physics is the study of nature and natural phenomena. The observations and experiments lead the physicists to certain facts. A remarkable fact is that some special physical quantities remain constant in time. These are called the conserved quantities of nature. In classical physics, we deal with following conservaion laws :

- Law of conservation of energy
- Law of conservation of linear momentum
- Law of conservation of angular momentum
- Law of conservation of charge

Pfryscal Qunntitics

The quantities by means of which we describe the laws of physics are called physical quantities. A physical quantity is completely specified if it has -

In general, expressing the magnitude of a physical quantity we choose a unit and then find how many times that unit is contained in the given physical quanity, i.e.
magnitude of physical quantity $=$ numerical value \times unit
Hence for a given physical quantity
(a) As the wit will change, numerical value will also change, e.g. density of water $=1 \mathrm{~g} / \mathrm{cc}=10^{3} \mathrm{~kg} / \mathrm{m}^{3}$ and not $1 \mathrm{~kg} / \mathrm{m}^{3}$.
(b) Larger the unit smaller will be the numerical value and vice-versa, e.g. if 1 ampere $=\left(\frac{1}{10}\right)$ emu of current then as 1 is greater than $\left(\frac{1}{10}\right)$, ampere is a smaller unit than
emu of current.

Types of Physical Quamtikies

There are two types of physical quantities

- Fundamental quantities
- Derived quantities
- Fundamental quantities: The quantities which do not depend upon other quantities for their complete defimition are known as fundamental or base quanties.
- There are seven fundamental or base quan ities in SI system. They arelength, mass, time, electric current, thermodynamic temperature, amount of substance, luminous intensity.
- Derived quantities : Those physical quantities which are derived from the fundamental quantities are known as derived quanties.
e.g. speed $\left(=\frac{\text { distance }}{\text { time }}\right)$, volume, acceleration, force, pressure etc.

IHsuchtiont

Find the fundamental quantities in term of which density can be expressed.
Solm. : We know density $=\frac{\text { mass }}{\text { volume }}$
Also, volume $=(\text { length })^{3}$
\therefore density $=\frac{\text { mass }}{(\text { length })^{3}}$
Hence density is a derived quantity which depends on base quantities mass and length.

UNITS

- The chosen reference standard of measurement in multiples of which, a physical quantity is expressed is called the unit of that quantity.e.g., when we say that length of a rod is 3 metres, then metre is unit to measure the length of the rod.
- The result of measurement of a physical quantity is expressed by a number (ornusnerical measure) accompanied by a unit. In general,
Measure of aphysical quantity $=$ numerical value $(n) \times$ unit (u).

Characteristics of a Standard Unit

A unit selected for measuring a physical quantity should fulfill the following requirements :

- It should be of convenient size.
- It should be well defined.
- It should be easily available so that as many laboratories as possible can duplicate it.
- It should not change with time and place.
- It should not change with the change in physical conditions e.g. temperature, pressure etc.
- It should be universally agreed upon so that results obtained in different countries are comparable.

FUNDDAREENTAL AND DERIVED UNITS

- Fundamental units : The units chosen for measuring fundamental quantities are known as fundamental units e.g. kilogram, metre, second are the findamental units for mass, length and time respectively.
- Derived units : The units of derived quantities or the units that can be expressed in terms of the base units are called derived units.
e.g. unitof speed $=\frac{\text { unit of distance }}{\text { unit of trme }}=\frac{\text { metre }}{\text { second }}=\mathrm{m} \mathrm{s}^{-1}$

Some derived units are named in honour of great scientists e.g. unit of force - newton (N), unit of $\mathbf{~ f e q u e n c y ~ - ~ h e r t z ~}$ (Hz) etc.

SYSTEM OF UNRTS

A complete set of units, both fundamental and derived for all kinds of physical quantities, is called a system of units. A few common systems are given below :

- CGS system or Gaussian system

S.No.	Physical quantity	Name of the unit	Symbol
1.	Length	centimetre	cm
2.	Mass	gram	g
3.	Time	second	s

- FPS system

S.No.	Pbysical quantity	Name of the unit	Symbol
1.	Length	foot	ft
2.	Mass	pound	lb
3.	Time	second	s

- MKS system

S.No.	Physical quantity	Name of the unit	Symbol
1.	Length	metre	m
2.	Mass	kilogram	kg
3.	Time	second	s

- International system of units (SI) : The system of units, which is at present internationally accepted for measurement is abbreviated as SI. The SI is based on the following seven fundamental units and two supplementary units as shown in the table.

S. No.	Physical quantity	Name of the unit	Symbol
1.	Length	metre	m
2.	Mass	kilogram	kg
3.	Time	second	s
4.	Electric current	ampere	A
5.	Temperature	kelvin	K
6.	Amount substance	mole	mol
7.	Luminous intensity	candela	cd
Supplementary			
8.	Plane angle	radian	rad
9.	Solid angle	steradian	sr

- Metre : One metre is the length of the path travelled by light in vacuum during a time interval of $1 / 299,792,458$ of a second.
- Kilogram : One kilogram is equal to the niass of the intemational prototype of the kilogram (a platinum-iridium alloy cylinder) kept at International Bureau of Weights and Measures, at Sevres, near Paris, France.
- Second : One second is the duration of $9,192,631,770$ periods of the radiation corresponding to the transition between the two hyperfine levels of the ground state of the cesium 133 atom.
- Ampere : One ampere is that constant current, which when maintained in each of the two staight parallel conductors of infinite length and negligible circular cross-section, held one metre apart in vacuum, shall produce a force per unit length of $2 \times 10^{-7} \mathrm{~N} / \mathrm{m}$ between them.
- Kelvin : One kelvin, is the fraction 1/273.16 of the themodynamic temperature of the triple point of water.
- Mole: Onemoie is the amount of substance of a system, which contains as many elementary entities as there are atoms in 0.012 kilogram of carbon-12.
- Candela : One candela is the luminous intensity, in a given direction, of a source that emits mono-chromatic radiation of frequency 540×10^{12} hertz and that has a radiantintensity in that direction of $1 / 683$ watt per steradian.
- Radiar: One radian is the angle subtended at the centre of a circle by an arc equal in length to the radius of the circle.
- If an arc of length $d s$ subtends an angle $d \theta$ at the centre O of a circle of radius r as shown in the figure, then

$$
d \theta=\frac{d s}{r} \text { radian }
$$

- Steradian : One steradian is the solid angle subtended at the centre of a sphere, by that surface of the sphere, which is equal in area, to the square of radius of the sphere.
- If an area dit of a spherical surface subtends a solid angle as at the centre of the sphere O of radius r as shown in the ligetre,
 then

$$
\alpha \Omega=\frac{d A}{r^{2}} \text { steradian }
$$

- Advantases af

0 SI is a cohesen system of units.

- SI is a rational system of units.

O SI is an absohite system of units.
0 SI is a metric system.

- Practicel ¥ukt of leagto :

$x x^{2}$	
1.	$\begin{aligned} & 1 \text { astronomical unit }=1 \mathrm{AU} \\ &=1.495 \times 10^{11} \mathrm{~m} \\ & \\ &\text { (avarage distance of the sun form athe eart }) \end{aligned}$
2.	1 light year $=1$ iy $=0.46 \times 10^{5} \mathrm{~m}$ (distance that light travels with velocity of 3×10^{8} in s^{-1} in 1 year)
3.	1 parsec $=3.08 \times 10^{16} \mathrm{~m}$ (parsec is the distance at which average radius of earth's orbit stubtends an angle of 1 arc second)
4.	1 micron $=1 \mu \mathrm{~m}=10^{-6} \mathrm{~m}$
5.	1 augstom $=1 \mathrm{~A}=10^{-10} \mathrm{~m}$
6.	fermi $=1 \hat{f}=10^{-15} \mathrm{~m}$

* Fracticall unity of mass:

Kive	
1.	
2.	
3.	1 pound $=0.4536 \mathrm{~kg}$
4.	$\begin{aligned} 1 \text { atomic mass unt } & =1 \text { amu or } 10 \\ & =1.66 \times 10^{-27} \mathrm{~kg} \end{aligned}$

- Fractural uaits on time:

2.	Lunar month: It is the taken by moon to complete one revolution around the earth in its orbit. $1 \text { Iunar month }=27.3 \text { days }$
3.	Solar year : It is the time taken by the eartit to complete one revolution around the sua in its orbit.
4.	Tropical year : It is that year in which solar eclipseoccurs.
5.	Leap year: It is that year in which the month of February is of 23 days.
6.	1 solar day $=86400 \mathrm{~s}$
7.	1 shake $=10^{-8} \mathrm{~s}$.

- The prefexes, their symbols and their values expressed as powers of 10 are as shown in table.

Pomer onlo	Prefz	Symbol
10^{-1}	deci	d
10^{-2}	centi	c
10^{-3}	milli	m
15	micr	μ
10^{-9}	nano	12
10^{-12}	pico	p
${ }_{1}^{10^{-15}}$	fento	f̂
10^{-18}	atto	a
10^{-21}	zepto	z
10^{24}	yocto	y
10^{3}	deca	da
19^{2}.	hecto	h
10^{3}	cilo	k
10	mega	M
10^{9}	giga	G
10^{12}	tera	T
10^{13}	peta	P
10^{18}	exa	E
10^{22}	zetta	E
10^{24}	yotia	Y

- To convert a physical quantify fon one set of units to the other, the requiteri multiplication factor is callod conversion factor.
- Magnitude of aphysicalqumtity=ntarerical value $\{n\} \times$ unit $\{t\}$ while conversion fom one set of mits to the other the magnitude of the quantity must remaia same. Therefere $n_{1} u_{4}=n_{2} z_{2}$ or $n u=$ constant or $n<\frac{1}{u}$

3. It means that the numeric value of a physical quantity is inversely proportional to the base unit.
e.g. $\quad 1 \mathrm{~m}=100 \mathrm{~cm}=3.28 \mathrm{ft}=39.4 \mathrm{inch}$
(SI) (CGS) (TPS)
