Mustrafignz

The acceleration due to gravity is $9.8 \mathrm{~m} \mathrm{~s}^{-2}$. Give its value in $\mathrm{ft} \mathrm{s}^{-2}$.
Soln. : As $1 \mathrm{~m}=3.2 \mathrm{ft}$

$$
\therefore \quad 9.8 \mathrm{~m} \mathrm{~s}^{-2}=9.8 \times 3.28 \mathrm{ftsec}^{2}=32.14 \mathrm{ft} \mathrm{~s}^{-2} \approx 32 \mathrm{ft} \mathrm{~s}^{-2} .
$$

DIMENSION OF A PHYSICAL QUANTITY

- All physical quantities can be expressed in terms of the seven fundamental units. We call these seven physical quantities as seven dimensions of the physical world. So, dimensions of a physical quantity are the powers (or exponents) to which the base quantities are raised to represented that quantity. For example,
Acceleration $=\frac{\text { Velocity }}{\text { Time }}$
\therefore Dimensions of acceleration $=\frac{\text { Velocity dimensions }}{\text { Timedimensions }}$
Dimension of Velocity $=\frac{\text { Dimension of length }}{\text { Dimension of time }}=\frac{L}{T}=\left[\mathrm{LT}^{-1}\right]$
\therefore Dimensions of acceleration

$$
=\frac{\mathrm{LT}^{-1}}{\mathrm{~T}}=\mathrm{LT}^{-2}=\mathrm{M}^{0} \mathrm{~L}^{1} \mathrm{~T}^{-2}
$$

Hence the dimensions of acceleration are zero in mass, 1 inch length and -2 in time.

Dimensional Formula and Dimensional Equation

- The dimensional formula of any physical quantity is that expression which represents how and which of the base quantities are included in that quantity. It is written by enclosing the symbols for base quantities with appropriate powers in square brackets i.e. []
e.g. Dimensional formula of acceleration is $\left[\mathrm{M}^{0} \mathrm{~L}^{1} \mathrm{~T}^{-2}\right]$.
- The equation obtained by equating a physical quantity with its dimensional formula is called a dimensional equation.
e.g. Dimensional equation for acceleration is

$$
[a]=\left[\mathrm{M}^{0} \mathrm{~L}^{1} \mathrm{~T}^{-2}\right]
$$

Similarly, dimensional equation for density is

$$
[\rho]=\left[\mathrm{M}^{1} \mathrm{~L}^{-3} \mathrm{~T}^{0}\right]
$$

The dimensional formulae and SI units of physical quantities are as shown in the table.

$\begin{gathered} \mathrm{S} . \\ \mathrm{No} . \end{gathered}$	Physical quantity	Relation with other physical quantities	Dimensions	Dimensional formula	SI unit
1.	Area	Length \times Breadth	[L] \times [L]	[$\mathrm{M}^{6} \mathrm{~L}^{2+} \mathrm{T}^{0}$]	m^{2}
2.	Volume	Length \times Breadth \times Height	$[\mathrm{L}] \times[\mathrm{L}] \times[\mathrm{L}]$	[$\mathrm{M}^{0} \mathrm{~L}^{3} \mathrm{~T}^{0}$]	m^{3}
3.	Density	$\frac{\text { Mass }}{\text { Volume }}$	$\frac{[\mathrm{M}]}{\left[\mathrm{L}^{3}\right]}$	$\left[\mathrm{ML}^{-3} \mathrm{~T}^{0}\right]$	$\mathrm{kg} \mathrm{m}^{-3}$
4.	Frequency	$\frac{1}{\text { Time period }}$	$\frac{1}{[T]}$	$\left[\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{-1}\right]$	s^{-1} or Hz (hertz)
5.	Speed/Vielocity	$\frac{\text { Distance/Displacement }}{\text { Time }}$	$\frac{[\mathrm{L}]}{[\mathrm{T}]}$	$\left[\mathrm{M}^{0} \mathrm{LT}^{-1}\right]$	$\mathrm{m} \mathrm{s}^{-1}$
6.	Acceleration	$\frac{\text { Velocity }}{\text { Time }}$	$\frac{\left[\mathrm{LT}^{-1}\right]}{[\mathrm{T}]}$	[$\mathrm{M}^{0} \mathrm{LT}^{-2}$]	$\mathrm{m} \mathrm{s}^{-2}$
7.	Force	Mass \times Acceleration	[M][1T ${ }^{-2}$]	[MLT^{-2}]	N (newton)
8.	Impulse	Force \times Time	[$\left.\mathrm{MLT}^{-2}\right][\mathrm{T}]$	[ML' ${ }^{-1}$]	N s
9.	Work	Force \times Distance	[MLT^{-2}][L]	[$\mathrm{ML}^{2} \mathrm{~T}^{-2}$]	J (joule)
10.	Energy	Work	[$\mathrm{ML}^{\left.-\mathrm{T}^{-2} \text { - }\right]}$	[$\mathrm{ML}^{2} \mathrm{~T}^{-2}$]	J
11.	Power	$\frac{\text { Work }}{\text { Time }}$	$\frac{\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right]}{[\mathrm{T}]}$	$\left[\mathrm{ML}^{2} \mathrm{~T}^{-3}\right]$	W (watt)
12.	Momentum	Mass \times Velocity	[M][LT^{-1}]	[MLT ${ }^{-1}$]	$\mathrm{kg} \mathrm{m} \mathrm{s}^{-1}$
13.	Pressure, stress	$\frac{\text { Force }}{\text { Area }}$	$\frac{\left[\mathrm{MLT}^{-2}\right]}{\left[\mathrm{L}^{2}\right]}$	$\left[\mathrm{ML}^{-1} \mathrm{~T}^{-2}\right]$	Nm^{-2} or Pa (Pascal)
14.	Strain	$\frac{\text { Change in dimension }}{\text { Original dimension }}$	$\frac{[\mathrm{L}]}{[\mathrm{L}]}$	[$\left.\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{\bullet \bullet}\right]$	No units
15.	Modulus of elasticity	$\frac{\text { Stress }}{\text { Strain }}$	$\frac{\left[\mathrm{ML}^{-1} \mathrm{~T}^{-2}\right]}{\left[\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{0}\right]}$	$\left[\mathrm{ML}^{-1} \mathrm{~T}^{-2}\right]$	Nm^{-2}
16.	Surface tension	Force Length	$\frac{\left[\mathrm{MLT}^{-2}\right]}{[\mathrm{L}]}$	$\left[\mathrm{ML}^{0} \mathrm{~T}^{-2}\right]$	$\mathrm{N} \mathrm{m}^{-1}$

17.	Specific gravity/relative density	$\frac{\text { Density of body }}{\text { Density of water at } 4^{\circ} \mathrm{C}}$	$\frac{\left[\mathrm{ML}^{-3}\right]}{\left[\mathrm{ML}^{-3}\right]}$	$\left[\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{0}\right]$	No units
18.	Velocity gradient	$\frac{\text { Velocity }}{\text { Distance }}$	$\frac{\left[\mathrm{LT}^{-1}\right]}{[\mathrm{L}]}$	[$\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{-1}$]	s-1
19.	Pressure gradient	$\frac{\text { Pressure }}{\text { Distance }}$	$\frac{\left[\mathrm{ML}^{-1} \mathrm{~T}^{-2}\right]}{[\mathrm{L}]}$	[$\left.\mathrm{ML}^{-2} \mathrm{~T}^{-2}\right]$	N m ${ }^{3}$
20.	Pressure energy	Pressure \times Volume	$\left[\mathrm{ML}^{-1} \mathrm{~T}^{-2}\right]\left[\mathrm{L}^{3}\right]$	$\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right]$	j
21.	Coefficient of viscosity	$\frac{\text { Force }}{\text { Area } \times \text { velocity gradient }}$	$\frac{\left[\mathrm{MLT}^{-2}\right]}{\left[\mathrm{L}^{2}\right]\left[\mathrm{LT}^{-1} / \mathrm{L}\right]}$	[$\mathrm{ML}^{-1} \mathrm{~T}^{-1}$]	Pas (Pascal second)
22.	Angle, Angular displacement	$\frac{\text { Arc }}{\text { Radius }}$	$\frac{[\mathrm{L}]}{[\mathrm{L}]}$	$\left[\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{0}\right]$	rad (radian)
23.	Trigonometric ratio $(\sin \theta$, $\cos \theta, \tan \theta$ etc.)	$\frac{\text { Length }}{\text { Length }}$	$\frac{[\mathrm{L}]}{[\mathrm{L}]}$	$\left[\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{0}\right]$	No units
24.	Angular velocity	$\frac{\text { Angle }}{\text { Time }}$	$\frac{\left[\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{0}\right]}{[\mathrm{T}]}$	$\left[\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{-1}\right]$	$\mathrm{rad} \mathrm{s}^{-1}$
25.	Angular acceleration	$\frac{\text { Angular velocity }}{\text { Time }}$	$\frac{\left[\mathrm{T}^{-1}\right]}{[T]}$	[$\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{-2}$]	rad s-2
26.	Radius of gyraion	Distance	[L]	[$\mathrm{M}^{0} \mathrm{LT}^{0}$]	m
27.	Moment of inertia	Mass $\times\left(\right.$ Radius of gyration) ${ }^{2}$	[M][L2]	[$\mathrm{ML}^{2} \mathrm{~T}^{0}$]	$\mathrm{kg} \mathrm{m}{ }^{2}$
28.	Angular momentum	Moment of inertia \times Angular velocity	$\left[\mathrm{ML}^{2}\right]\left[{ }^{\text {[}}\right.$] $]$	[$\mathrm{ML}^{2} \mathrm{~T}^{\text {d }}$]	$\mathrm{kg} \mathrm{m}^{2} \mathrm{~s}-1$
29.	Moment of force, moment of couple	Force \times Distance	[MLT^{-2}] ${ }^{\text {L }}$]	$\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right]$	Nm
30.	Torque	Force \times Distance	[MLT^{-2}]LL]	[$\mathrm{ML}^{2} \mathrm{~T}^{-2}$]	Nm
31.	Angular frequency	$2 \pi \times$ Frequency	$\left[\mathrm{T}^{-1}\right]$	[$\left.\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{-1}\right]$	$\mathrm{rad} \mathrm{s}^{-1}$
32.	Wavelength	Distance	[L]	[$\mathrm{M}^{0} \mathrm{LT}^{0}$]	m
33.	Hubble constant	$\frac{\text { Recession speed }}{\text { Distance }}$	$\frac{\left[\mathrm{LT}^{-1}\right]}{[\mathrm{L}]}$	$\left[\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{-1}\right]$	s^{-1}
34:	Intensity of wave	$\frac{\text { Energy }}{\text { Time } \times \text { area }}$	$\frac{\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right]}{[\mathrm{T}]\left[\mathrm{L}^{2}\right]}$	$\left[\mathrm{ML}^{0} \mathbb{T}^{3}\right]$	W m ${ }^{-2}$
35.	Radiation pressure	$\frac{\text { Intensity of wave }}{\text { Speed of light }}$	$\frac{\left[\mathrm{ML}^{0} \mathrm{~T}^{-3}\right]}{\left[\mathrm{LT}^{-1}\right]}$	[$\mathrm{ML}^{-1} \mathrm{~T}^{2}$ - ${ }^{\text {] }}$	$\mathrm{Nm}-^{2}$
36.	Energy density	$\frac{\text { Energy }}{\text { Volume }}$	$\frac{\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right]}{\left[\mathrm{L}^{3}\right]}$	[$\mathrm{ML}^{-1} \mathrm{~T}_{-}{ }^{2}$]	Jm^{3}
37.	Critical velocity	$\begin{aligned} & \begin{array}{l} \text { Reynold's number } \times \\ \text { Coefficient of viscosity } \end{array} \\ & \hline \text { Density } \times \text { Radius } \end{aligned}$	$\frac{\left[\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{0}\right]\left[\mathrm{ML}^{-1} \mathrm{~T}^{-1}\right]}{\left[\mathrm{ML}^{-\mathrm{L}^{-3}}\right][\mathrm{L}]}$	$\left[\mathrm{M}^{0} \mathrm{LT}^{-1}\right]$	m s- ${ }^{1}$

38.	Escape velocity	($2 \times$ Acceleration due to gravity \times Earth's radius) ${ }^{1 / 2}$	$\left[\mathrm{LT}^{-2}\right]^{1 / 2} \times[\mathrm{L}]^{1 / 2}$	$\left[\mathrm{M}^{0} \mathrm{LT}^{-1}\right]$	$\mathrm{m} \mathrm{s}^{-1}$
39.	Heat energy, internal energy	Energy	$\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right]$	$\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right]$	J
40.	Kinetic energy	$\frac{1}{2} \times \text { Mass } \times(\text { Velocity })^{2}$	$[\mathrm{M}]\left[\mathrm{LT}^{-1}\right]^{2}$	$\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right]$	J
41.	Potential energy	Mass \times Acceleration due to gravity \times Height	$[\mathrm{M}]\left[\mathrm{LT}^{-2}\right][\mathrm{L}]$	$\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right]$	J
42.	Rotational kinetic energy	$\begin{aligned} & \frac{1}{2} \times \text { Moment of inertia } \times \\ & (\text { Angular velocity })^{2} \end{aligned}$	$\left[\mathrm{ML}^{2}\right]\left[\mathrm{T}^{-1}\right]^{2}$	$\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right]$	J
43.	Efficiency	$\frac{\text { Output work or energy }}{\text { Input work or energy }}$	$\frac{\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right]}{\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right]}$	$\left[\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{0}\right]$	No units
44.	Angular impulse	Torque \times Time	$\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right][\mathrm{T}]$	$\left[\mathrm{ML}^{2} \mathrm{~T}^{-1}\right]$	$\mathrm{kg} \mathrm{m} \mathrm{m}^{-1}$
45.	Gravitational constant	$\frac{\text { Force } \times(\text { Distance })^{2}}{\text { Mass } \times \text { Mass }}$	$\frac{\left[\mathrm{MLT}^{-2}\right]\left[\mathrm{L}^{2}\right]}{[\mathrm{M}][\mathrm{M}]}$	$\left[\mathrm{M}^{-1} \mathrm{~L}^{3} \mathrm{~T}^{-2}\right]$	$\mathrm{N} \mathrm{m} \mathrm{m}^{2} \mathrm{~kg}^{-2}$
46.	Planck's constant	$\frac{\text { Energy }}{\text { Frequency }}$	$\frac{\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right]}{\left[\mathrm{T}^{-1}\right]}$	$\left[\mathrm{ML}^{2} \mathrm{~T}^{-1}\right]$	J s
47.	Heat capacity, entropy	$\frac{\text { Heat energy }}{\text { Temperature }}$	$\frac{\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right]}{[\mathrm{K}]}$	$\left[\mathrm{ML}^{2} \mathrm{~T}^{-2} \mathrm{~K}^{-1}\right]$	$\mathrm{J} \mathrm{K}^{-1}$
48.	Specific heat capacity	$\frac{\text { Heat energy }}{\text { Mass } \times \text { Temperature }}$	$\frac{\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right]}{[\mathrm{M}][\mathrm{K}]}$	$\left[\mathrm{M}^{0} \mathrm{~L}^{2} \mathrm{~T}^{-2} \mathrm{~K}^{-1}\right]$	J $\mathrm{kg}^{-1} \mathrm{~K}^{-1}$
49.	Latent heat	$\frac{\text { Heat energy }}{\text { Mass }}$	$\frac{\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right]}{[\mathrm{M}]}$	[$\mathrm{M}^{\bullet} \mathrm{L}^{2} \mathrm{~T}^{-2}$]	Jkg^{-1}
50.	Thermal expansion coefficient or thermal expansivity	$\frac{\text { Change in dimension }}{$ Original dimension $\times \text { Temperature }$}	$\frac{[\mathrm{L}]}{[\mathrm{L}][\mathrm{K}]}$	$\left[M^{0} L^{0} T^{0} K^{-1}\right]$	K^{-1}
51.	Coefficient of thermal conductivity	$\frac{\text { Heat energy } \times \text { Thickness }}{\text { Area } \times \text { Temperature } \times \text { Time }}$	$\frac{\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right][\mathrm{L}]}{\left[\mathrm{L}^{2}\right][\mathrm{K}][\mathrm{T}]}$	$\left[\mathrm{MLT}^{-3} \mathrm{~K}^{-1}\right]$	W m ${ }^{-1} \mathrm{~K}^{-1}$
52.	Bulk modulus	$\frac{\text { Volume } \times(\text { Change in pressure })}{\text { Change in volume }}$	$\frac{\left[\mathrm{L}^{3}\right]\left[\mathrm{ML}^{-1} \mathrm{~T}^{-2}\right]}{\left[\mathrm{L}^{3}\right]}$	$\left[\mathrm{ML}^{-1} \mathrm{~T}^{-2}\right]$	$\mathrm{Nm} \mathrm{m}^{-2}$
53.	Centripetal acceleration	$\frac{(\text { Velocity })^{2}}{\text { Radius }}$	$\frac{\left[\mathrm{LT}^{-1}\right]^{2}}{[\mathrm{~L}]}$	[$\mathrm{M}^{0} \mathrm{LT}^{-2}$]	$\mathrm{mm} \mathrm{s}^{-2}$
54.	Stefan's constant	$\frac{\text { Energy }}{(\text { Area }) \times(\text { time }) \times(\text { temperature })^{4}}$	$\frac{\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right]}{\left[\mathrm{L}^{2}\right][\mathrm{T}][\mathrm{K}]^{4}}$	$\left[\mathrm{ML}^{0} \mathrm{~T}^{-3} \mathrm{~K}^{-4}\right]$	$\mathrm{W} \mathrm{m}^{-2} \mathrm{~K}^{-4}$
55.	Wien's constant	Wavelength \times Temperature	[L][K]	$\left[\mathrm{M}^{0} \mathrm{LT}^{0} \mathrm{~K}\right]$	m K

55.	Universal gas constant	Pressime \times Volume Mole \times Temperature	$\frac{\left[M^{-3} T^{-2}\left[L^{3}\right]\right.}{[\mathrm{mol}][\mathrm{K}]}$	$\left[\operatorname{wLL}^{2} \mathrm{~T}^{-2}\right.$ $\left.\mathrm{K}^{-1} \mathrm{~mol}^{-1}\right]$	$5 \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
57.	Boltzmann constant	$\frac{\text { Universal gas constant }}{\text { Arogadaro's number }}$	$\frac{\left[\mathrm{Me}^{2} \mathrm{~T}^{-2} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right]}{\left.[\mathrm{mol}]^{-1}\right]}$	[$\left.\mathrm{ML}^{2} \mathrm{~T}^{2} \cdot \mathrm{~K}^{-1}\right]$	$\mathrm{J}^{\mathrm{K}}{ }^{-3}$
58.	Charge	Current \times Time	[AJIT]	[M01TA]	$\begin{gathered} c \\ \text { (coulomb) } \end{gathered}$
59.	Current density	$\frac{\text { Current }}{\text { Area }}$	$\frac{[A]}{\left[L^{2}\right]}$	[$\mathrm{M}^{0} \mathrm{~L}-\mathrm{T}^{\mathrm{T}} \mathrm{A}$]	Am^{-2}
60.	Electric potential, ejectromotive ferce, voltage	$\frac{\text { Work }}{\text { Charge }}$	$\frac{\left[\mathrm{ML}^{2} \mathrm{~T}^{-2} \mathrm{j}\right.}{[\mathrm{A}]]}$	$\left[\mathrm{NIL}^{2} \mathrm{~T}^{-3} \mathrm{~A}^{-1}\right]$	V (volit)
61.	Resistance	$\frac{\text { Petential ifference }}{\text { Current }}$	$\frac{\left[\mathrm{ML}^{2} \mathrm{~T}^{-3} \mathrm{~A}^{-1}\right]}{[\mathrm{A}]}$	$\left[\mathrm{ML}^{2 \mathrm{~T}^{-3}} \mathrm{~A}^{-2}\right]$	Ss (ohmm)
62.	Capacitance	$\frac{\text { Charge }}{\text { Potential difference }}$	$\frac{[\mathrm{AT}]}{\left[\mathrm{M}^{2} \mathrm{~T}^{-3} \mathrm{~A}^{-1}\right]}$	[$\mathrm{M}^{-1}\left[-2 \mathrm{~T}^{4} \mathrm{~A}^{2}\right]$	F (farad)
63.	Electric eld	$\frac{\text { Electrical force }}{\text { Charge }}$	$\frac{\left[\mathrm{MLT}^{-2}\right]}{[\mathrm{AT}]}$	$\left[\mathrm{M} \mathrm{T}^{-3} \mathrm{~A}^{-1}\right]$	NC^{-1}
64.	Electric flux	Electric field \times Area	$\left.\mathrm{MMET} \mathrm{T}^{-3} \mathrm{~A}^{-1}\right]\left[\mathrm{L}^{2}\right]$	[aI ${ }^{3} \mathrm{~T}^{3} \mathrm{~A}^{-1}$	$\mathrm{Na}^{2} \mathrm{C}^{-1}$
65.	Eiectric dipole moment	Charse \times Length	[AT]IL]	[${ }^{\text {W }}$ LTA]	Cm
66.	Electric field strength or =lectric intensity	$\frac{\text { Potential difference }}{\text { istance }}$	$\frac{\left[\mathrm{ML}^{2} \mathrm{~T}^{-3} \mathrm{~A}^{-1}\right]}{[\mathrm{I}]}$	$\left.\mathrm{MaLT}^{3} \mathrm{~A}-{ }^{-}\right]$	V_{ma}
57.	Magnetic field, magnetic fux density, nagnetic induction	$\frac{\text { Force }}{\text { Current } \times \text { Length }}$	$\frac{[\mathrm{MLT} \cdot}{\left[\mathrm{A} \mathrm{KLC}^{2}\right]}$	$\left[\mathrm{ML}^{6} \mathrm{~T}^{-2} \mathrm{~A}^{-1}\right]$	T (esia)
68.	Magnetic Mux	Magnetic field \times Area	$\left[\mathrm{ML}^{0 \mathrm{~T}^{-2}} \mathrm{~A}^{-1}\right]\left[\mathrm{L}^{2}\right]$	$\left[\mathrm{MLL}^{2} \mathrm{~T}^{-2} \mathrm{~A}^{-1}\right]$	$\begin{gathered} \text { Wb } \\ \text { (weber) } \end{gathered}$
69.	Inductance	$\frac{\text { Magnetic flux }}{\text { Current }}$	$\frac{\left[\mathrm{vI}^{2} \mathrm{~T}^{-2} \mathrm{~A}^{-1}\right]}{[\mathrm{A}]}$		7 (henry)
70.	Magnetic dipole moment	Current \times Area	[A] ${ }^{\text {[}}$ [$]$	[$\mathrm{Mr}^{\text {L }} \mathrm{L}^{2} \mathrm{~T}^{0} \mathrm{~A}$]	A m ${ }^{2}$
71.	Intensity of magnetisation	$\frac{\text { Magnesic moment }}{\text { Volume }}$	$\frac{\left[L^{2} \mathrm{~A}\right]}{\left[\mathrm{L}^{2}\right]}$	[$\mathrm{ML}^{1-1} \mathrm{~T}^{\mathbf{4}} \mathrm{A}$]	A m^{-1}
72.	$\begin{aligned} & \text { Pemittivity of } \\ & \text { free space } \end{aligned}$	$\frac{\text { Marge } \times \text { Charge }}{4 \pi \times \text { Electric force } \times(\text { Distance })^{2}}$	$\frac{[\Delta T][\mathrm{AT}]}{\left[\mathrm{ML} \mathrm{~T}^{-2}\right][\mathrm{L}]^{2}}$	$\left[\mathrm{Ma}^{-1} \mathrm{~L}^{-3} \mathrm{~T}^{4} \mathrm{~A}^{2}\right]$	$\mathrm{C}^{2} \mathrm{~N}^{2} \mathrm{~m}^{2}$
73.	Permeabiity of free space	$\frac{2 \pi \times \text { Force } \times \text { Distance }}{\text { Current } \times \text { Currast } \times \text { Length }}$	$\frac{\left[\mathrm{MLT}^{-2}\right][\mathrm{L}]}{[\mathrm{A}[\mathrm{~A}][\mathrm{L}]}$	$\left[\mathrm{MLT}^{-2} \mathrm{~A}^{-8}\right]$	TmA^{-1}
74.	Refractive index	$\frac{\text { Speed of light in vacuum }}{\text { Speed of light in medium }}$	$\frac{\left.\mathrm{ZT}^{-1}\right]}{\left[\mathrm{LT}^{-1}\right]}$	[$\mathrm{Ma}^{0 \times 9} \mathrm{~T}^{0}$]	No uzits

75.	Faraday constant	Avogadro's number \times Elementary charge	$\left[\mathrm{mol}^{-1}\right][\mathrm{AT}]$	$\left[\mathrm{M}^{0} \mathrm{~L}^{0}\right.$ TAmol $\left.^{-1}\right]$	$\mathrm{C} \mathrm{mol}^{-1}$
76.	Wave number	$\frac{2 \pi}{\text { Wavelength }}$	$\frac{1}{[\mathrm{~L}]}$	$\left[\mathrm{M}^{0} \mathrm{~L}^{-1} \mathrm{~T}^{0}\right]$	$\mathrm{rad} \mathrm{m}^{-1}$
77.	Radiant flux, radiant power	$\frac{\text { Energy emitted }}{\text { Time }}$	$\frac{\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right]}{[\mathrm{T}]}$	$\left[\mathrm{ML}^{2} \mathrm{~T}^{-3}\right]$	watt
78.	Luminosity of radiant flux or radiant intensity	Radiant power or Radiant flux of source Solid angle	$\frac{\left[\mathrm{MI}_{,}^{2} \mathrm{~T}^{-3}\right]}{\left[\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{0}\right]}$	[$\mathrm{ML} .{ }^{2} \mathrm{~T}^{-3}$]	watt Sr^{-1}
79.	Luminous power or luminous flux of source	$\frac{\text { Luminous energy emitted }}{\text { Time }}$	$\frac{\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right]}{[\mathrm{T}]}$	$\left[\mathrm{ML}^{2} \mathrm{~T}^{-3}\right]$	lumen
80.	Relative luminosity	Luminous flux of a source of given wavelenth Luminous flux of peak sensitivity wavelength (555 nm) source of same power	$\frac{\left[\mathrm{ML}^{2} \mathrm{~T}^{-3}\right]}{\left[\mathrm{ML}^{2} \mathrm{~L}^{-3}\right]}$	$\left[\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{0}\right]$	No units
81.	Luminous efficiency	$\frac{\text { Total luminous flux }}{\text { Total radiant flux }}$	$\frac{\left[\mathrm{ML}^{2} \mathrm{~T}^{-3}\right]}{\left[\mathrm{ML}^{-2} \mathrm{~T}^{-3}\right]}$	$\left[\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{0}\right]$	Nounits
82.	Illuminance or illumination	$\frac{\text { Luminous flux incident }}{\text { Area }}$	$\frac{\left[\mathrm{ML}^{2} \mathrm{~T}^{-3}\right]}{\left[\mathrm{L}^{2}\right]}$	$\left[\mathrm{ML}^{0} \mathrm{~T}^{\text {2-3 }}\right.$]	lux
83.	Decay constant	$\frac{0.693}{\text { Half life }}$	$\left[\mathrm{T}^{-1}\right]$	$\left[\mathbf{M}^{0} L^{0} \mathrm{I}^{-1}\right]$	s^{-1}
84.	Resonant frequency	$\frac{1}{2 \pi \sqrt{\text { Inductance } \times \text { Capacitance }}}$	$\begin{aligned} & {\left[\mathrm{ML}^{2} \mathrm{~T}^{-2} \mathrm{~A}^{-2}\right]^{-1 / 2} x} \\ & {\left[\mathrm{M}^{-1} \mathrm{~L}^{-2} T^{4} \mathrm{~A}^{2}\right]^{-1 / 2}} \end{aligned}$	$\left[\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~A}^{0} \mathrm{~T}^{-1}\right]$	hertz (Hz)
85.	Quality factor or Q-factor of coil	Resonant frequency \times InductanceResistance	$\frac{\left[\mathrm{T}^{-1}\right]\left[\mathrm{ML}^{2} \mathrm{~T}^{-2} \mathrm{~A}^{-2} I\right.}{\left[\mathrm{ML}^{2} \mathrm{~T}^{-3} \mathrm{~A}^{-2}\right]}$	$\left[\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{0}\right]$	No units
86.	Power of lens	(Focal length) ${ }^{-1}$	$[L]^{-1}$	$\left[\mathrm{M}^{0} \mathrm{~L}^{-1} \mathrm{~T}^{0}\right]$	dioplre (D)
87.	Magnification	$\frac{\text { Size of image }}{\text { Size of object }}$	$\frac{[\mathrm{L}]}{[\mathrm{L}]}$	$\left[\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{0}\right]$	No units
88.	Fluid flow rate	$\frac{(\pi / 8)(\text { Pressure }) \times(\text { Radius })^{4}}{(\text { Viscosity coefficient }) \times(\text { Length })}$	$\frac{\left[\mathrm{ML}^{-1} \mathrm{~T}^{-2}\right][\mathrm{L}]^{4}}{\left[\mathrm{ML}^{-1} \mathrm{~T}^{-1}\right][\mathrm{L}]}$	$\left[\mathrm{M}^{0} \mathrm{~L}^{3} \mathrm{~T}^{-1}\right]$	$\mathrm{m}^{3} \mathrm{~s}^{-1}$
89.	Capacitive reactance	(Angular frequency x Capacitance) ${ }^{-1}$	$\left[\mathrm{T}^{-1}\right]^{-1}\left[\mathrm{M}^{-1} \mathrm{~L}^{-2} \mathrm{~T}^{4} \mathrm{~A}^{2}\right]^{-1}$	$\left[\mathrm{ML}^{2} \mathrm{~T}^{-3} \mathrm{~A}^{-2}\right]$	ohm (Ω)
90.	Inductive reactance	(Angular frequency \times Inductance)	$\left[\mathrm{T}^{-1}\right]\left[\mathrm{ML} \cdot{ }^{2} \mathrm{~T}^{-2} \mathrm{~A}^{-2}\right]$	$\left[\mathrm{ML}^{2} \mathrm{~T}^{-3} \mathrm{~A}^{-2}\right]$	ohm (Ω)

Here it is worthy to note that constants such as $\frac{1}{2}$, π or trigonometrical functions such as $\sin \omega t$, (ratio of two sides), etc. have
no units and dimensions.

There are various physical quantities which have same dimensional formula. The list of such physical quan and corresponding dimensional formula are given below.

$\begin{aligned} & \text { S. } \\ & \text { No. } \end{aligned}$	Physical Quantities	Dimensionak Forimina
1.	Frequency, angular frequency, angular velocity, velocity gradient	$\left[\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{-1}\right]$
2.	Work, internal energy, potential energy, kinetic energy, torque, moment of force	$\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right]$
3.	Pressure, stress, Young's modulus, bulk modulus, modulus of rigidity, energy density	$\left[\mathrm{ML}^{-1} \mathrm{~T}^{-2}\right]$
4.	Momentum and impulse	[MLT^{-1}]
5.	Acceleration, Acceleration due to gravity, gravitational field intensity	$\left[\mathrm{M}^{0} \mathrm{LT}^{-2}\right]$
6.	Thrust, force, weight, energy gradient	[MLT^{-2}]
7.	Angular momentum and Planck's constant (h)	$\left[\mathrm{ML}^{2} \mathrm{~T}^{-1}\right]$
8.	Surface tension, force gradient, spring constant	$\left[\mathrm{ML}^{0} \mathrm{~T}^{2}\right]$
9.	Strain, refactive index, relative density, angle, solid angle, distance gradient relative permeability, relative permittivity	$\left[\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{0}\right]$
10.	If P is pressure, V is volume, m is mass, s is specific heat, L is latent heat, ΔT is rise in temperature then $P V ., m L,(m s \Delta T)$ all have dimensions of energy	$\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right]$
11.	If l is length, g is acceleration due to gravity, m is mass, k is force constant, R is radius of earth, then $\left(\frac{1}{g}\right)^{1 / 2},\left(\frac{m}{k}\right)^{1 / 2},\left(\frac{R}{g}\right)^{1 / 2}$ all have the dimensions of time.	[$\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}$]
12.	If L is inductance, R is resistance, C is capacitance then $L / R, C R$ and $\sqrt{E C}$ all have the dimensions of time.	[$\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}$]

Mhatiations

If a composite physical quantity in terms of moment of inertia \bar{I}, force F, velocity v, work W and length L is defined as,

$$
Q=\left(\frac{I F_{v^{2}}^{2}}{W V^{3}}\right)
$$

Find the dimensions of Q and identify it.
Solin. : As $[2]=\left[\mathrm{ML}^{2}\right],[F]=\left[\mathrm{MLT}^{-2}\right]$
$[v]=\left[\mathrm{LT}^{-1}\right]$ and $[W]=\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right]$

$$
[Q]=\frac{\left[\mathrm{ML}^{2}\right]\left[\mathrm{MLT}^{-2}\right]\left[\mathrm{LT}^{-1}\right]^{2}}{\left.\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right] \mathrm{LL}\right]}
$$

$\therefore[Q]=\left[\mathrm{MT}^{-2}\right]$
As [$\left.\mathrm{MT}^{-2}\right]$ are dimensions of surface tension, force constant or surface energy, i.e., energy per unit area, the physical quantity may be any one of these.

APELCATIONS OF DIMENSIOHAL ANALVSIS

(1) To check the dimensional correctness of a given physical relation.
This is based on the 'principle of homogeneity of dimensions'. According to this principle the dimensions of each term on both sides of an equation must be the same i.e., $[$ LHS $]=[$ RHS $]$.

This principle is based on the fact that only quantities of same kind can be added or subtracted. For example, if we have an equation like $A=B+C$, the quantities A, B and C must have the same dimensions. A dimensionally correct equation may or may not be physically correct.

Example

(i) Consider the formula

$$
S=u t-\left(\frac{1}{4}\right) a t^{2}
$$

Dimensionally, $[\mathrm{L}]=\left[\mathrm{LT}^{-1}\right][\mathrm{T}]-\left[\mathrm{LT}^{-2}\right]\left[\mathrm{T}^{2}\right]$
i.e., $[\mathrm{L}]=[\mathrm{L}]-[\mathrm{L}]$

As in the above equation dimensions of each term on both sides are same, so this equation is dimensionally correct. However, from equations of motion we know that

$$
S=u t+\left(\frac{1}{2}\right) a t^{2}
$$

So the given equation is physically wrong though it is correct dimensionally.
(iii) Consider the formula,

$$
F=\frac{m v^{2}}{r^{2}}
$$

Dimensionally, $\left[\mathrm{MLT}^{-2}\right]=\frac{r^{2}}{[\mathrm{M}]\left[\mathrm{LT}^{-1}\right]^{2}}\left[[\mathrm{~L}]^{2}\right.$
i.e. $\quad\left[\mathrm{MLT}^{-2}\right]=\left[\mathrm{MT}^{-2}\right]$

As in the above equation dimensions on both sides are not same; this formula is not correct dimensionally, so can never be correct physically.
(2) To convert a physical quantity firom one system of units to the other.
This is based on the fact that magnitude of a physical quantity remaius same whatever system is used for measurement i.e. magnitude $=$ numerical value $(n) \times$ unit $(u)=$ constant
or $n_{1} u_{1}=n_{2} u_{2}$
so if a quantity is represented by $\left[\mathrm{M}^{a} \mathrm{~L}^{b} \mathrm{~T}^{c}\right]$ then

$$
n_{2}=n_{1} \frac{u_{1}}{u_{2}}=n_{1}\left(\frac{M_{1}}{M_{2}}\right)^{a}\left(\frac{L_{1}}{L_{2}}\right)^{b}\left(\frac{T_{1}}{T_{2}}\right)^{c}
$$

Example
(ii) Pressure is given by $P=\frac{F}{A}$

Thus dimensional formula of pressure is

$$
[P]=\frac{[F]}{[A]}=\frac{\left[\mathrm{MLT}^{-2}\right]}{\left[\mathrm{L}^{2}\right]}=\left[\mathrm{ML}^{-1} \mathrm{~T}^{-2}\right]
$$

