W
The acceleration due to gravity is 9.8 m s=. Give its value in
fts2.
Soln. : As1m=32ft 7
98ms2=98x3128 ftlsec2=32.14fis2=32fisZ

DIMENSION OF A PHYSICAL QUANTITY

e  All physical quantities can be expressed in terms of the
seven fundamental units. We call these seven physical
quantities as seven dimensions of the physical world.
So, dimensions of a physical quantity are the powers
(or exponenis) to which the base quantities are raised to
represented that quantity. For example,

Velocity
ime

Acceleration =

Velocity dimensions
Tirre-dmrensions

Dimension of length _ L
Dimension of time T

. Dimensions of acceleration =

Dimension of Velocity = =[LT™]

.. Dimensions of acceleration
LT " .
=_‘=LT 2 =M0L1T 2
Hence the dimensions of acceleration are zero in mass,
linch length and -2 in time.

Dimensionai Formula and Dimensional Equation
e The dimensional formula of any physical quantity is that
expression which represents how and which of the base
quantities are included in that quantity. It is written by
enclosing the symbols for base quantities with appropriate
powers in square brackets i.e. []
e.g. Dimensional formula of acceleration is [M®LIT-2].
e Theequation obtained by equating a physical quantity with its
dimensional formula is called a dimensional equation.
e.g. Dimensional equation for acceleration is
[a] = [M*LT]
Similarly, dimensional equation for density is
[p] = [M'L1]

The dimensional formulae and SI units of physical quantities are as shown in the table.

S. Physical Relation with other physicai . . Dimensional .
N . - Dimensions SI unit
0. quantity quantities formula
1. | Area Length x Breadth [L] x[L] [MCL*T0] m*
2. | Volume Length x Breadth x Height [L] x [L] x [L] [MOLTO] m3
; Mass_ M] 370 -3
3 3. | Density Volume ﬁ [ML-T9) kg m F
4. | Frequency =Ll i [MPLOT] 57! or
. Time period 1] Hz (hertz)
s. Speed/\ﬂelocity Distance/Displacement [E [MOLT_I] m s-!
_ Time (T]
8 -1
6. | Acceleration \_/el_oﬂ (Lo} [MOLT-?) m s>
Time [T}
Force Mass x Acceleration [M](LT2] (MLT-] N (newton)
. | Impulse | Force x Time [MLT-3][T] [MLT] Ns
9. | Work Force x Distance [MLT][L] [ML*T-2] I (joule)
| 1. | Energy Work [MLT-?] [MLT] J
ML2T 2
11 | Power work [—m—] [ML2T-3] W (watt)
12. | Momentum Mass * Velocity [M][LT} ) | [ML'I‘"ij _kg m s
-2
Force IMLT 7] -T2 Nm? or
13. | Pressure, stress | ——— [ LZ] | [ML1T=] Pa (Pascal)
14. | Strain Cha“ge in dimension L) [MCLOTH) No units
Original dimension (L] |
Modulus of Stress ML 'T7%] T2 2
= elasticity Strain MEOT%) ML™T™) Al
16, Surf?ace Force [MLT? [MLOT] N m!
tension Length IL]
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Specific ' 3
17. | gravityfrelative Density of body [ML™} [MCLOT®) No units
. Density of water at 4°C ML)
density
. . -1
18 Velo?lty V?lomty [LT™] [MCLOT-] !
gradlent Distance [L]
9. Pressure Pressure [MLIT2) [ML-2T-2] N m3
gradient Distance m[L ]
90, | Fressure Pressure * Volume [ML-T-2j(L?] [ML2T-2] i
energy
) Coefficient of Force (MLT™2) (ML-IT-1] Pas (Pascal
" | viscosity Area x velocdity gradient [L2][LT /L) second)
Angle, Angular | _ Arc L] rad
22. ; {5l MOLOT0 .
displacement Radius L] [ ] (radian)
Trigonometric Leneth
23. | ratig (sin8, m % [MPOLITO) No units
cos8, tan® etc.)
07 010
24. Angu.lar Aggle MLT]) [MOLOT ) rad s!
velocity Time (T]
o i —1
25, Angular . Anoula.r velocity [T [MPLOT 2] rad 52
acceleration Time 1)
Radi f
26, | oOMSO Distance L] [MCLT] m
gyrason
Moment of . C . ) 270 )
27. | . Mass * (Radius of gyration}* [M][L?] [ML?TY)] kg m
inertia
28, Angular Moment ofmejma X (ML2)[T] (ML2T] kg m? s
momentum Angular velocity
Moment of
29. | force, moment | Force % Distance [MLT)[L] [ML2T-] Nm
of couple
30. | Torque Force x Distance | [MLT2}{L] [ML2T-] Nm
31. Angular 27 x Frequency [T-] [MOLOT-] rads!
frequency .
32. | Wavelength Distance [L) [MOLT m
33, Hubble Recession speed (LT [MOLOT-1] -
constant Distance [L]
" Intensity of Energy [ML?T?] [MLOF3) W m2
| wave Time x area [TIL?]
35, Radiation Intensity of wave [ML°T®) [ML-IT2] N m-2
pressure Speed of light LT
.| Energy [MI2T2) Ry E
36. | Energy density NV otme o [ML-T-#] Jm
- Reynold's number x Or 0 1
37. Cr;tlcil Coefficient of viscosity ML’T HSML T1 | [MOLT m sl
veloctty Density x Radius (ML-IL] -




Escape (2 x Acceleration due to 12 1 o7 -1 =1
8 velocity gravity x Earth’s radius)!/2 [LT-T (L] (MPLT™] .
Heat  energy, 1 272 22
39. internal energy Energy [ML?T-?] [ML?T-2] J
40. | Kinetic energy _;_ x Mass x (Velocity)? [M][LT-172 [ML2T-2] )
Potential Mass x Acceleration due to » PN
L energy gravity x Height [MILT=L] (MLAT™] I
. R'otat.ional 1. Moment of inertia x [ML2][T1]2 [ML2T-2] ]
kinetic energy (Angular velocity)?
. Output work 0 T )
43. | Efficiency P WOrk of eneey MUT [MOLOTO] No units
Input work or energy [ML T "]
44. ?;i‘;léz Torque x Time [ML2T-2][T) [ML2T-] kg m?2 s
. —29r7 2
45, | Gravitational | gorce x (Distance)? [MLT "J[L"] [M-L3T2] N m? kg2
constant Mass x Mass MIM]
46. Planck’s Energy [MLzT’Z_] [ML2T-1] Is
constant Frequency [T i
i
47, Heat capacity, Heat energy [M1L2T 72 [ML2T-2K-1] TR
entropy Temperature (K]
48, Speciﬁc heat Heat energy [ME2T™2] [MPL2T-2K-1] | J ket K-
capacity Mass x Temperature MIK]
22
49. | Latent heat T MLT 7] [M*L2T-2] Tkg!
Mass
M]
Thermal
expansion Change in dimension
50. | coefficient Original dimension ML MILOTOK-] | K1
or thermal *Temperature | [L][K]
expansivity
Coefficient . 22
51. | of thermal Heat energy x Thickness [ML T “J[L] [MLT3K1] W ! K
conductivity Area x Temperature x Time 15 JKIT)
52. | Bulk modulys | ~osume x(Change in pressure) | (oML 1) [MLIT?] | Nm?
’ Change in volume ! L]
53. Centripet.al (VelOCity)2 [LT_]]z [MOLT—2] m s2
acceleration “Radius L]
54 Stefan’s Energy [MLZT“2 ] [MLOT-3K ] W m2 K4
constant (Area) x (time) x (temperature)* | [L*][TIK]*
55. | Wien’s constant | Wavelength x Temperature | [L1K] [MOLTK] m K
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' | ' ~Zare \ s
' | Universal gas | Pressure * Volume [MET Lt [T f bt
;56 e [ 1ct | JK tmol! |
L i: constant ] Mole x Temperature . [mol][K] | K-Zmol™] !
] £ ‘! ; ‘!} __*f
| | Universa ¢ s 1 L ‘.
l . ;Bcitzmann : Univers tl gas constant [MI*T*K 1mol I MI2TKA] 7K ;
i | constant Avogadro'snumber {mol-] | !
! l : ; I {
e L Yy i CTAYTS I ST ¢ g
58. E Charge ; Current x Time % [AT] [MYLE*TA] {coulomb)
, ’. (A] ¥ o
| Current Current 3 | IMOL2TOA A2 !
: ! - ilE — | —1 I i
. 9. ! density Area i35 | [ ] : }
i - H H
iElectric i f !
! . AT i Y 272 |
g0, | Potential, | work - ML | MLTSAY | Vivoly |
{ eiectromotive | Charge | TTAT] :
| | ferce, voltage | I § :
| j T ‘ 2epm3a—1 ; '
W T Psteniial difference [MLTTT7A™] | 2r3a 21 F O3 ety !
tﬁl. IRemstance %- Current " N f[ML I=A4] 1Q {obm} :i
i 7 i
! Charge ! {AT] ;
62. | Capagcitan - = e o | [M-1L-2T%A2] | F {farad)
i P e . Potential difference E [MLFT AT ‘ [ ] ¢ ‘ ;
! o ( J f
Electrical force [MLT™7) ;
3. | Blectri e ! .. | ~3A-1 N
6 | Blectric field Chares AT | MLT ]
; 64 {Electric flux Flectric field » Area iMLT3A-N[LY § T 3TAA-] I Nm2 ! .
; Blectric dipole | - L s [\ o -
65. % N Charse > Length 1 [ATL] ; [MPLTA] Cm
Electric field ! !
Potential difference V2 T3pa—t i
g6, Swengthor g io A T (MET A ] |MLTAA] (Ve
slectric Wistance ! LI / - i
Litensity i t _
t Magnetic ‘ \ |
i field, magnetic Force | MLT2] { |
47. | fiux density, PN [ Lo [MLET2A-Y] T (sesla) |
72 Current x Length : |
i magnetic : © O TANT] f ‘
{ induction | !
68. | Magnetic flux | Magnetic field % Area MLOT2ANLY | [MLAT2AY wo o
. | Magne P I: {weber) i
i 1 1
N 3 22 o ) i s !
59. | mductance Magnetic flux LT Al CpMLTiacd] H hemy)
Current | [A] ! ' i
! ‘ fi ;" !
o9, | Magnetic Current x Area NISHE: MPLTCA] |Am? ;
dipole mement [ - |
! 3 o AF A . I T 2 :
T o | RO, = DT [Amt
m Ation volume i - H |
H 55 3 Ty :
! Damitvity 8 @harge x Charge T 1 {
7 tem]«ﬁ.‘i 1ty of — b —a - g’ 5 i % ! [g&‘]L_}TJAZ] Cl N2 m-2 !
iree space 47> Electric force x(Distance)® | [MLT LY - i
; } ; : —.
! oahisivty of g 18 ‘ { -2 H | i
73 Permesahility of |  2axForce x Distance | IMLT j}L] [MLT2A] b Al ‘
free space Current x Curranit x Length L [AA)L] / !
E H i
H §
; 1ve i Spead of light in va LT )
| 74 Refracnvc 2P ed O% 1}% {‘n yacm -"Lh ]] [MOLITO] { No uzits
II index Speed of light in medium LILT Y ;

i




Farada Avogadro’s number x
75. Y 2 [mol AT ML°TAmot] | C mol-!
constant Elementary charge
2n 1
76. | Wave number | Wavelength o] [MOL-1T9] radm™!
AR Radiant flux, Energy emitted (ML*T 7] (MLT- -
" | radiant power Time (T] )
Luminosity of
radiant flux or | Radiant power or MI2T~%]
78. . Radiant flux of source W [MI2T-3] watt sr!
pacint Solid angle [ ]
intensity
Luminous |
'79. POWEROL Luminous energy emitted MPT™?] ML2T-3) Jumen
luminous flux Time 7]
of source
. Luminous flux of a source of
Relative given wavelenth ML)
80. | luminosity Luminous flux of peak sensitivity ML [MOLOT) No units
wavelength (555 nm) source of [ I
same power
a1 Luminous Total luminous flux [ML:T—S] [MCLOTY] No units
" | efficiency Total radiant flux ‘ MLT™3)
82 [lluminance or Luminous flux incident ’_[MLzT—sl [MLD'IL.3] Tux
" | iluminasion Area (£*]
0.693
83. | Decay constant RIS [T [MOLOT] g
Resonant 1 [ML2T-2A—2]-1/2 x oL 0AOT-1 "
84. frequency 2n./Inductance x Capacitance [M-IL-2T4A2}12 IMPLPATT] ertz (Hz)
Quality Resonant frequency » Py
85. | factor or % Inductance (T ][I\Z/H“ ;I‘__.:\ I [MPLOTO) No units
Q-factor of coil Resistance MU A a]
86. | Power oflens | (Focal length)™ [LT! [MOL-1TO) diopwe (D) |
e | Size of image L] )
87. | Magnification | W m [MOLOT9] No units
. ~1p=2yr7 14
) (n/8)(Pressure) x (Radius)* [ML™ T “][L) o 31 -
I (Viscosity coefficient) x (Length) MLIT L) (MOLT] e |
Capacitive Angular frequency [
89. pt ’ (Ang a . 4 " - [T [MIL2T9A%L | [ML2T3A2] | ohm (Q)
reactance _ apacitance)”
Inductive | (Angular frequency x
90. | (Ang anency [T-Y[ML’T2A? [ML?T-3A?] | ohm (Q)
reactance Inductance)

Here it is worthy to note that constants such as 0 , ® or trigonometrical functions such as sinw¢?, (ratio of two sides), etc. have
no unit% and dimensions. 2
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There are various physical quantities which have same
dimensional formula. The list of such physical quan#ties
and corresponding dimensional formula are given below.

Dimensional
Formula
[MOLOT’I]

Physical Quantities

Frequency, angular frequency,

angular velocity, velocity gradient
Work, intemal energy, potential
energy, lenetic energy, torque, momert
of force

[\)l —
! ~2
I L

[ML2T-%]

3. Pressure,;:ress? Young’s modulus, | [ML-1T-2}
bulk modulus, modulus of rigidity,

energy density

| IMLT-] |
[MCLT2]

4. Momentum and impulse

S. Acceleration, Acceleration due to
gravity, gravitational field intensity
6. Thrust, force, weight,

energy gradient

[MLT]

7. —A;lgular momentum and Planck’s | [ML2T-1]

constant (%)

8. Surface tension, force | [MLOT?]

gradient, spring constant

3. Etrain, refactive index, relative | [MCLOT]
density, angle, solid angle, distance
gradient relative  permeability,

relative permittivity

if P is pressure, ¥ is volume, # is | [ML2T2]
mass, s is specific heat, £ is latent
heat, AT is rise in temperature then
PV, mL, (imsAT) all have dimensions

of energy

11. | If 7islength, g is acceleration due | [M*LOT]
to gravity, m is mass, & is force

constant, R is radius of earth, then

NG [2)1/2 R 12
g) \&) \g

all have the dimensions of time.

12. |IfLisinductance, R is resistance, Cis | [MCLOT]

capacitance then /R, CR and JLC
all have the dimensions of time.

a cpsue physical quantity m terms of moment of inertia
1, force F, velocity v, work W and length L is defined as,

Find the dimensions of O and identify it.
Soln. : As [/]= [ML?, [F]=[MLT2]
V1= [LT™] and (7] = [ML?T?2]

(01 (ML )[MLT2)[LT'P

- [MLT L]
<« [0]=MT]
As [MT-?] are dimensions of surface tension, force constant
or surface energy, i.e., energy per unit area, the physical
quantity may be any one of these. -

APPLICATIONS OF DIMENSIONAL ANALYSIS

(1} Tocheckthedimensionaicorrectness of a given physical
relation.
This is based on the ‘principle of homogeneity of
dimensions’. According to this principle the dimensions of
each term on both sides of an equation must be the saine
ie., [LHS]=[RHSL
This principle is based on the fact that only quantities of
same kind can be added or subtracted. For example, if we
have an equation like 4 = B + C, the quantities 4, Band C
must have the same dimensions. A dimensionally correct
equation may or may not be physically correct.

Example
{i} Consider the formula

1
S=ut- (Zjatz

Dimensionally, [L] = [LT'[T] - [LT3][T?]

fe, [L]= (L] ~[L]

Asin the above equation dimensions of each term on both
sides are same, so this equation is dimensionally correct.
However, from equations of motion we know that

S=ut+ (ljatz
2

So the given equation is physically wrong though it is
coirect dimensionally.

(i} Consider the formula,
2
=
r -112
Dimensionally, [MLT_2 1= &E‘;—]

ie.  [MLT?]=[M1?

As in the above equation dimensions on both sides are not
same; this formula is not correct dimensionally, so can
never be correct physically.

To convert a physical guantity firom one system ofunits
to the other.

This is based on the fact that magnitude of a physical quantity
remains same whatever system is used for measurement z.e.
magnitude = numerical value () X unit (z) = constant

or Ry =i, :
so if a quantity is represented by [M*LT¢] then

g a b ¢
A EEE
U My) L) \©L

‘Example

2

(i) Pressureis givenby P= Ll

Thus dimensional formula of pressure is

MLT?]




