If a particle travels a distance S in time t_{1} to t_{2}, the average speed is $v_{\mathrm{av}}=\frac{S}{t_{2}-t_{1}}$
If a particle ravels a distance s_{1}, s_{2}, s_{3} etc. with speeds v_{1}, v_{2}, v_{3} etc. respectively, then total travelled distance $S=s_{1}+s_{2}+s_{3}+\ldots . .+s_{n}$

Total time taken of trip $=\frac{s_{i}}{v_{1}}+\frac{z_{2}}{v_{2}}+\cdots \cdots+\frac{s_{n}}{v_{13}}$
Average speed of a trip $=\frac{s_{1}+s_{2}+s_{3}+\ldots .+s_{n}}{\left(\frac{s_{1}}{v_{1}}+\frac{s_{2}}{v_{2}}+\ldots .+\frac{s_{m}}{v_{2}}\right)}$

yElocity

- Velocity of a body is defined as the rate of change of displacement of the body with time
i.e., Velocity $=\frac{\text { displacement }}{\text { timeinterval }}$
- Speed is a scalar quantity whereas velocity is a vector quantity.
- Toth the spesd and velocity have the same unit and same dimensional farmula $\left[\mathrm{M}^{0} \mathrm{LT}^{-1}\right.$].
- Average velocity: Average velocity is defined as the ratio of the displacement to the time interval for which the motion takes place.
i.e, Average velocity $=\frac{\text { displacement }}{\text { time taken }}$

Inta particle be at point A at time t_{1} and point B at me t_{2}. Position vectors of A and B are \vec{r}_{1} and \vec{r}_{2} respectively. The displacement in this time interval is the vector $\overrightarrow{A B}=\left(\overrightarrow{F_{2}}-\overrightarrow{r_{1}}\right)$. The average velocity in this time interval is

$$
\vec{v}_{a y}=\frac{\overrightarrow{A B}}{t_{2}-t_{1}}=\frac{\vec{r}_{z}-\bar{r}_{1}}{t_{2}-t_{1}}
$$

Here $\overrightarrow{A B}=\overrightarrow{O B}-\overrightarrow{C A}=\bar{r}_{2}-\vec{r}_{1}=$ change in position vector. For small time interval between t and $t+\Delta t$, change in position is $\Delta \vec{r}$ then average velocity in Δt time interval

- Instantaneous velocity : The velocity of a body at a given instant of time during motion is known as instantaneous velocity i.e.
Insiantaneous velocity $=\lim _{\Delta t \rightarrow 0} \frac{\Delta \bar{r}}{\Delta \dot{t}}=\frac{d \bar{r}}{d t}$
a The magnitude of instantaneous velocity is equal to the instantanoous speed at the given instant.
- The speedometer of an automobile measures the instantaneous speed of the automobile.
* The average speed of a body is water or equal to the magnitude of the average velocity over a given time interval.

- Acceleration of a body is defined as the rate of change of velocity of a body with time.
i.e. Acceleratien $=\frac{\text { change in velocity }}{\text { time taken. }}$
- Averase seceleration: Average acceleration is defined as the ratio of the change in velocity to the time interval during which the change occurs
i.e. Average acceleration $=\frac{\text { change in velocity }}{\text { time interval }}$
* Inotantancous acceleration : The acceleration of a body at a given instant of time is known as instantaneous acceieration
i.e. Average acceleration $=\frac{\text { change in velocity }}{\text { time mterval }}$
- If a body is speeding up, acceleration is in the direction of velocity, if its spem is decreasing, acceleration is in the direction opposite to that of the velocity. This statement is independent of the choice of the origin and the axis.
* The zero velocity of a body at any instant does not necessarily imply zero acceleration at that instant. A body may be momentarily at rest and yet have nou-zero acceleration. For example, a body thrown up has zero velocity at its uppermost point but the acceleration at that instant continues to be the acceleration due to gravity.

The relation between time i and displacement x is $t=c x^{2}+\beta x$, where α and β are constants, find the relation betwen velocity and acceleration.
Solks : We have the relation between time t and displacement x as

$$
t=\omega x^{2}+\rho x
$$

Binerentiating with respect to x, we get, $\frac{d t}{d x}=20 x+$
$\therefore \quad \frac{d x}{d t}=\frac{1}{2 \alpha x+\beta}$ or $v=\frac{1}{2 x+\beta}\left[\because \frac{d x}{d t}=\right.$ velocity $\left.v\right]$ Now, acceleration, $\frac{d v}{d t}=\frac{d}{d t}\left[\frac{1}{2 \alpha x+\beta}\right]$
$\Rightarrow \frac{d}{d x}\left[\frac{1}{2 \alpha ;+\beta}\right] \cdot \frac{2 x}{d t}=-\frac{2 \alpha}{(2 \alpha x+\beta)^{2}} v=-2 \alpha, v^{2} \cdot \nu=\cdots 2 \alpha v^{3}$.
$\Rightarrow a=-20 y^{3}$.

A body moving in a straight line with uniform acceleratir describes three successive equal distances in time intervals t_{1}, t_{2} and t_{3} respectively. Show that

$$
\frac{1}{t_{1}}-\frac{1}{t_{2}}+\frac{1}{t_{3}}=\frac{3}{t_{1}+t_{2}+t_{3}}
$$

Soln.: Let y_{1}, v_{2} and v_{3} be the initial velocities of the particle in the time intervals \hat{t}_{1}, t_{2} and t_{3} respectively, and v be the final velociy of the particle in the time interval t_{3}. The particle moves equal disaces in each time interval and let it be d.

Then, average velocity in the time interval t_{1} is

$$
\begin{gather*}
\frac{d}{t_{1}}=\frac{1}{2}\left(v_{1}+v_{2}\right) \tag{i}\\
\text { Similarly, } \frac{d}{t_{2}}=\frac{1}{2}\left(v_{2}+v_{3}\right) \tag{ii}\\
\frac{d}{t_{3}}=\frac{1}{2}\left(v_{3}+v\right) \tag{iii}
\end{gather*}
$$

and average velocity in the time interval $\left(t_{1}+t_{2}+t_{3}\right)$ is

$$
\begin{equation*}
\frac{3 d}{t_{1}+t_{2}+t_{3}}=\frac{1}{2}\left(v_{1}+v\right) \tag{iv}
\end{equation*}
$$

Fromeqn (i), (ii), (iii) and (iv) we get,

$$
\begin{aligned}
\frac{1}{t_{1}}-\frac{1}{t_{2}}+\frac{1}{t_{3}} & =\frac{1}{2 d}\left(v_{1}+v_{2}\right)-\frac{1}{2 d}\left(v_{2}+v_{3}\right)+\frac{1}{2 d}\left(v_{3}+\mathrm{v}\right) \\
& =\frac{1}{2 d}\left(v_{1}+v\right)=\frac{3}{t_{1}+t_{2}+t_{3}} \text { (Proved) } .
\end{aligned}
$$

Illustration 3

At time t, positions of three particles A, B and C are as follows:

$$
x_{A}=2 t+7, x_{B}=3 t^{2}+2 t+6, x_{C}=5 t^{3}+4 t
$$

Which of them has uniform (constant) acceleration?
Soln. :

$$
\text { : (a) } v=\frac{d x_{A}}{d t}=2 \text { and } a=\frac{d^{2} x_{A}}{d t^{2}}=0
$$

The particle has no acceleration at all.
(b) $v=\frac{d x_{B}}{d t}=(3 \times 2 t)+2+0=6 t+2$
$a=\frac{d^{2} x_{B}}{d t^{2}}=6$
Here, acceleration is uniform.
(c) $v=\frac{d x_{C}}{d t}=5 \times 3 t^{2}+4=15 t^{2}+4$

$$
a=\frac{d v}{d t}=\frac{d^{2} x_{C}}{d t^{2}}=15 \times 2 t=30 t .
$$

Here acceleration depends upon time, so it is not uniform.

DISPLACEMENT-TIME GRAPH

(i) If the graph is a straight line parallel to time-axis, shown by line $A B$, it means that the body is at rest i.e. velocity $=$ zero.

(ii) If the graph is a straight line inclined to time-axis (such as $O C$) shows that body is moving with a constant velocity.
(iii) If the graph obtained is a curve like $O D$ whose slope decreases with time, the velocity goes on decreasing, i.e., motion is retarded.
(iv) If the graph obtained is a curve like $O E$ whose slope increases with time, the velocity goes on increasing, i.e. motion is accelerated.

VELOCITY-TIME GRAPH

(i) If the graph is a straight line parallel to time axis shown by line $A B$, it means that the body is moving with a constant velocity or acceleration (a) is zero.

(ii) If the graph is a straight line and inclined to the timeaxis with +ve slope (line $O C$) it means that the body is moving with constant acceleration.
(iii) If the graph obtained is a curve like $O D$ whose slope decreases with time, the acceleration goes on decreasing.
(iv) If the graph obtained is a curve like $O E$ whose slope increases with time, the acceleration goes on increasing.
(v) The area of velocity-time graph with time axis represents the displacement of that body.

ACCELERATION-TIME GRAPH

(i) When the graph is a straight line and parallel to time axis then acceleration is constant.
(ii) When the graph is oblique straight line having positive slope, then acceleration is uniformly increasing.
(iii) When the graph is an oblique straight line having negative slope, then acceleration is uniformly decreasing.

- For uniform motion, acceleration is zero, displacementtime graph is a straight line inclined to the time axis as shown in the figure (i) and velocity time graph is a straight line parallel to time axis as shown in figure (ii).

(i)

(ii)
- For motion with uniform acceleration, displacementtime graph is a parabola as shown in figure (iii) while velocity-time graph is a straight line inclined to time axis as shown in the figure (iv).

Illustration 4

The velocity;-time graph of the motion of a car is given below. Find the distance travelled by the car in the first six seconds. What is the deceleration of the car during the last two seconds?

Soln.: The area enclosed between v -f carve gives the distance traveiled by the body.
\therefore Distance travelled by the car in the first six secoads $=$ area of triangle $A C C+$ area of rectangle $B D E C$

$$
\begin{aligned}
& =\frac{1}{2} \times 2 \times 3 \times 10^{3}+(6-2) \times 3 \times 10^{3} \\
& =3 \times 10^{3}+12 \times 10^{3}=15 \times 10^{3} \mathrm{~cm}=15 \mathrm{~m} .
\end{aligned}
$$

From straight line uation,

$$
\begin{aligned}
& y=u+a t \Rightarrow 0=3 \times 10^{3}+a \times 2 \\
& a=\frac{-3 \times 10^{3}}{2}=-1.5 \times 10^{3} \mathrm{~cm} s^{2}=-150 \mathrm{sis}^{2} .
\end{aligned}
$$

Indicate the velocity (v) - time (t), sraphs for a body:
(G) falling under gravisy.
(ii) thrown vertically upwards till it falls back to the ground after reachimg the highest point.
Golm : (1) Welocity increases from zere to say u
(ii) Velocity decreases fom u to zero at the bighest point. Ther it falis under gravity to acquire the velocity u when it hits the ground, a denotes the highest pome where $v=0$.
(0.0)

$(0,0)$

(ii)

Wotion a particle is defned by $x=\left\{3 \cdots 4 t+5 t^{2}\right\}$ m. Grapically represent the variation of velocity $\left(\frac{d x}{d y}\right)$ with time.
Soln. : $x=3-4 t+5 t^{2}$
$\therefore \quad \frac{d}{d t}=-4+10 t$
or velceity, $v=-4+10 t$
Av $t=0, v=-4 \mathrm{~m}$.

Also v or t. It is a straight line graph.

Ewation of Moxion for a friformy Accelerate thotion

(i) $v=u+u t$
(ii) $s=u t+\frac{1}{2} a t^{2}$
(iii) $y^{2}-n^{2}=2 a s$
(iv) $s_{n}=u+\frac{a}{2}(2 n \sim \underline{I})$

Where a is intial vel city y is fnal velocity, a is uniom a coleration, s is distance travelled in time t, s_{n} is distance covered in $n^{\text {th }}$ second. These equations are not valid if the acceleration is non-uniform.

Equation of moticn fora Frealy Falling Eody Indar Grawty

(a) $v=u+g t$
(ii) $h=\mu t+\frac{1}{2} g^{2}$
(iii) $v^{2}=x^{2}+2 g h$
(iv) $h_{n}=t+\frac{1}{2} g(2 n-1)$

From the top of a tower a stone is thrown up which reaches the ground in time \hat{t}_{1}. A second stone the wa down with the same speed reaches the ground in time t_{2}. A third sione releaced from rest from the same location reactes the ground in time t_{3}. Show that $t_{3}^{2}=t_{1} t_{2}$.
Soln. : Let $k=$ height of tower $u=$ speed en projection of stone
$\therefore \quad k=-4 i_{1}+\frac{1}{2} g t_{3}^{2}=u i_{2}+\frac{1}{2} g I_{2}^{2}$
But h is aiso $=0+\frac{1}{2} \operatorname{gt}^{2} 3$

$$
\begin{align*}
& \text { or } \quad u_{2}+u t_{1}=\frac{1}{2} g t_{1}^{2}-\frac{1}{2} g t_{2}^{3} \\
& \text { or } u\left(t_{2}+t_{1}\right)=\frac{1}{2} g\left(t_{1}+t_{2}\right\}\left\{t_{1}-t_{2}\right\} \\
& \text { or } z=\frac{1}{2} g\left(i_{1}-t_{2}\right) \tag{1}\\
& \therefore \quad-\frac{1}{2}\left\{\left\{\begin{array}{l}
\\
\{
\end{array} t_{1}-f_{2}\right\} t_{4}+\frac{1}{2} y_{1}^{2}=\frac{1}{2} \xi_{3}^{2}\right. \\
& \text { or }-t_{1}^{2}+t_{1} t_{2}+t_{1}^{2}=t_{3}^{2} \text { or } t_{1} t_{2}=t_{3}^{2}
\end{align*}
$$

A ball is dropped on to the floor from a height of 10 m. I rewounds to a height of 2.5 m . If the ball is in contact with the for for 0.01 sec , what is the average acceleration during eontact?
Solk. : Under free fall, veiocity, $y_{1}=\sqrt{2 g h}$

$$
v_{8}=\sqrt{2 \times 10 \times 10}=\sqrt{200} \mathrm{~m} / \mathrm{s}
$$

Under rise, velocity, $v_{2}=-\sqrt{2 \times 10 \times 2.5}=-\sqrt{50}$ mis
\therefore Chiange in velocity $=\left(v_{1}-v_{2}\right)=\sqrt{209}-(-\sqrt{50})$

$$
=\sqrt{200}+\sqrt{50}=21 \mathrm{~m} / \mathrm{s}
$$

$\therefore \quad$ Acceleration $=\frac{v_{1}-v_{2}}{\text { tune }}=\frac{21}{0.01}=2000 \mathrm{~m} / \mathrm{s}^{2}$
\therefore Acceleration $=2100 \mathrm{~m} / \mathrm{s}^{2}$.

A body is feciy dropred from a height h above the ground.
(a) Find the ratio of distances fallen in first one second, firse two seconds, first three seconds, ete.
(b) Find the ratio of distances fallen in 1^{14} second, in $2^{n \rightarrow}$ second, in $3^{\text {rd }}$ second etc.

$$
\begin{aligned}
\bar{h}_{3}: h_{2}: h_{3} \ldots \ldots \ldots \ldots & =\frac{1}{2} g(1)^{2}: \frac{1}{2} g(2)^{2}: \frac{1}{2} g(3)^{2}: \\
& =\frac{1}{2}^{2}: 2^{2}: 3^{2}: \ldots \ldots \ldots . \\
& =1: 4: 9: \ldots \ldots \ldots .
\end{aligned}
$$

(b) Now from the fomula of distance travelled in $n^{\text {ih }} \operatorname{secon}$ d $s_{n}=u+\frac{1}{2} a(2 n-1)$ where $s=a=g$
$\therefore s_{n}=\frac{1}{2} \cdot(2 n-1)$

