$$
\text { or, } \begin{aligned}
s_{1}: s_{2}: s_{3} \ldots & =\frac{1}{2} g(2 \times 1-1): \frac{1}{2} g(2 \times 2-1): \\
& \frac{1}{2} g(2 \times 3-1): \ldots \\
& =1: 3: 5 \ldots \ldots \ldots .
\end{aligned}
$$

VECTORS

- The physical quantities which have both magnitude as well as direction are known as vector quantities or vectors. e.g., force, velocity etc.
- Representation of a vector : A vector is represented by a straight line with arrow head on it. The length of the line represents the magnitude of a vector and arrow head tells the direction of vector. In writing, a vector is represent by a single letter with a arrow head on it, e.g., the force is a vector quantity, it is represented by \vec{F}.
- Vectors are of two types
(i) Polar vectors: A polar vector involves a displacement or virtual displacement e.g., velocity, force, etc.
(ii) Axial vectors or Pseudo vectors: A pseudo vector or axial vector involves the orientation of an axis in space e.g., angular velocity, torque, angular momentum, etc.
- Equal vectors : Two vectors are said to be equal if they have same magnitude and direction regardless of their initial positions.
- Negative vector : It is a vector having same magnitude but direction opposite to that of a given vector.
- Null vector: It is a vector whose magnitude is zero, but its direction is not defined.
- Properties of a null vector
(i) $\bar{A}+\overline{0}=\bar{A}$
(ii) $\lambda \overrightarrow{0}=\overline{0}$ where λ is a scalar.
(iii) $\overrightarrow{0} \vec{A}=\overrightarrow{0}$
- Unit vector : A vector having magnitude equal to unity.

To find the unit vector in the direction \bar{A}, we divide the given vector by its magnitude.
e.g. $\hat{A}=\frac{\vec{A}}{|\bar{A}|}$

- Coinitial vectors : The vectors are said to be co-initial, if their initial point is common.
- Collinear vectors : These are those vectors which are having equal or unequal magnitudes and are acting along the parallel straight lines.
- Coplanar vectors : These are those vectors which are acting in the same plane.
- Laws of vector algebra: If \bar{A}, \bar{B} and \bar{C} are vectors, and m and n are scalars, then
(i) Commutative Law for addition $\bar{A}+\bar{B}=\bar{B}+\bar{A}$
(ii) Associative Law for addition

$$
\bar{A}+(\vec{B}+\vec{C})=(\bar{A}+\vec{B})+\vec{C}
$$

(iii) Associative Law for multiplication

$$
m(n \bar{A})=(m n) \bar{A}=n(m \bar{A})
$$

(iv) Distributive Law

$$
\begin{aligned}
& (m+n) \bar{A}=m \bar{A}+n \bar{A} \\
& m(\bar{A}+\bar{B})=m \bar{A}+m \vec{B}
\end{aligned}
$$

- Triangle law of vector addition: It states that if two vectors can be represented both in magnitude and direction by the two sides of a triangle taken in the same order, then the resultant is represented completely (both in magnitude and direction) by the third side of the triangle taken in the opposite order. \vec{R} is the resultant of \bar{A} and \vec{B} as shown in figure,

$$
\begin{aligned}
& \text { then } R=\sqrt{A^{2}+B^{2}+2 A B \cos \theta} \\
& \tan \beta=\frac{B \sin \theta}{A+B \cos \theta}
\end{aligned}
$$

- Parallelogran law of vector addition : It states that if two vectors acting simultaneously at a point can be represented both in magnitude and direction by the two adjacent sides of a parallelogram, then the resultant is represented completely (both in magnitude and direction.) by the diagonal of the parallelogram passing through that point.
\vec{R} is the resultant of \bar{A} and \vec{B} as shown in figure,

$$
\text { then } R=\sqrt{A^{2}+B^{2}+2 A B \cos \theta}
$$

$$
\tan \beta=\frac{B \sin \theta}{A+B \cos \theta}
$$

- Polygon law of vector addition: It states that if a number of vectors can be represented both in magnitude and direction by the sides of a polygon taken in the same order, then their resultant is represented (both in magnitude and direction) by the closing side of the polygon taken in the opposite order.
- Rectangular component of a vector in a plane : When a vector is splitted into two component vectors at right angles to each other, the component vectors are called rectangular components of a vector. If \vec{A} makes an angle θ with x-axis, and A_{x} and A_{y} be the rectangular components of \vec{A} alongx-axis and y-axis respectively, then

$$
\vec{A}=A_{x} \hat{i}+A_{y} \hat{j}
$$

Here $A_{x}=A \cos \theta$ and $A_{v}=A \sin \theta$.
$\therefore \quad A_{x}^{2}+A_{v}^{2}=A^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)$
or $A=\left(A_{x}^{2}+A_{y}^{2}\right)^{1 / 2}$ and $\tan \theta=A_{y} / A_{x}$.

- Resolution of a vector in a space : Let α, β, and γ are the angles between \bar{A} and the x, y and z-axis, respectively as shown in the figure, then $A_{x}=A \cos \alpha, A_{y}=A \cos \beta, A_{z}=A \cos \gamma$
In general, we have $\bar{A}=A_{x} \hat{i}+A_{y} \hat{j}+A_{z} \hat{k}$
The magnitude of \vec{A} is

$$
A=\sqrt{A_{x}^{2}+A_{y}^{2}+A_{z}^{2}}
$$

Dot or Scalar Product

The dot or scalar preduct of eno vecters \vec{A} and \vec{B} denoted by $\vec{A} \cdot \vec{B}$ (read \vec{A} det \vec{B}) is defined as the product of the magnitudes of \vec{A} and \vec{B} and the cosine of the angic between them. In symbeis, $\vec{A} \cdot \vec{B}=A B \cos E, \quad 0 \leq \theta \leq \pi$
Wote $\vec{A} \cdot \vec{B}$ is a scalar and not a vecter.

- Preptrizes of datipronum
(i) $\vec{A} \cdot \vec{B}=\vec{B} \cdot \vec{A}$
(ii) $\bar{A}(\vec{B}+\hat{C})=\vec{A} \cdot \vec{B}+\vec{A} \cdot \bar{C}$
(1ii) $m(\vec{A} \cdot \bar{B})=(m \vec{A}), \vec{B}=\bar{A} \cdot\{m \bar{B})=(\vec{A} \cdot \vec{B}) m$, where m is a scalar
(iv) $\hat{i} \cdot \hat{i}=\hat{j} \cdot \hat{j}=\hat{k} \cdot \hat{k}=\hat{i}, \hat{i} \cdot \hat{j}=\hat{j} \cdot \hat{k}=\hat{k} \cdot \hat{i}=$,
(v) If $\vec{A}=A_{1} \hat{i}+A_{2} \hat{j}+A_{3} \hat{k}$ and $\vec{B}=B_{1} \hat{i}+B_{2} \hat{j}+B_{3} \hat{i}$

$$
\begin{aligned}
& \vec{A} \cdot \vec{B}=A_{1} B_{1}+A_{2} B_{2}+A_{3} B_{3} \\
& \vec{A} \cdot \vec{A}=A^{2}=A_{1}^{2}+A_{2}^{2}+A_{3}^{2} \\
& \vec{B} \cdot \vec{B}=B^{2}=B_{1}^{2}+B_{2}^{2}+B_{3}^{2}
\end{aligned}
$$

(vi) if $\vec{A} \cdot \bar{B}=0$ and \vec{A} and \vec{B} are not null vectors, then \vec{A} and \bar{B} are perpendicular.

Cross er Hector Product

The cross or vector product of \bar{A} and \vec{B} is a vector $\bar{C}=\vec{A} \times \vec{B}(\operatorname{read} \bar{A} \operatorname{cross} \bar{B})$ The magnitude of $\vec{A} \times \vec{B}$ is defined as the product of the magnitudes of \vec{A} and \vec{B} and \vec{B} the sine of the angle between them. The direction of the vector $\bar{C}=\vec{A} \times \bar{B}$ is perpendicular to the plane containing \vec{A} and \vec{B} and such that \vec{A}, \vec{B} and \vec{C} form a right handed system. In symbels,

$$
\vec{A} \times \vec{B}=A B \sin 9 \hat{n}, 0 \leq 0 \leq \pi
$$

where \hat{A} is a unit vector indicating the direction of $\bar{A} \times \vec{B}$

Examples of vect product :
(i) Torque $(\vec{\tau})=\vec{Y} \times \vec{F}$
(ii) Angular momentum $(\vec{L})=\vec{F} \times \vec{F}$
(iii) Velocity $(\bar{v})=\bar{\omega} \times \bar{r}$
(iv) Acceleration ($\overline{\text { M }}$) $=\overline{\mathrm{a}} \times \overline{\bar{i}}$

Here \vec{r} is pesition vector or radius vector and $\bar{F}, \overline{\boldsymbol{F}}, \bar{\omega}$ and $\overline{\text { a }}$ are force, linear mementum, angular veleciry and angular acceleration respectively.

- Properties 䁌vactor prodiact
(i) $\vec{A} \times \vec{B}=\cdots \vec{B} \times \vec{A}$
(ii) $\vec{A} \times(\vec{B}+\vec{C})=\vec{A} \times \vec{B}+\vec{A} \times \vec{C}$
(iii) $m(\vec{A} \times \vec{B})=(m \vec{A}) \times \vec{B}=\vec{A} \times(m \vec{B})=(\vec{A} \times \vec{B}) m$, where m is a scalar.
(iv) $\hat{i} \times \hat{i}=\hat{j} \times \hat{j}=\hat{k} \times \hat{k}=0, \hat{i} \times \hat{j}=\hat{k}, \hat{j} \times \hat{k}=\hat{i}, \hat{k} \times \hat{i}=\hat{\vec{j}}$
(v) If $\vec{A}=A_{1} \dot{i}+\hat{A}_{2} \hat{j}+A_{3} \hat{k} \operatorname{and} \vec{B}=A \hat{i}+B_{2} \hat{j}+B_{3} \hat{k}$, then

$$
\vec{A} \times \bar{B}=\left|\begin{array}{lll}
\hat{i} & \hat{j} & \hat{k} \\
A_{1} & A_{2} & A_{3} \\
B_{1} & Z_{2} & B_{3}
\end{array}\right|
$$

(vi) $\vec{A} \times \vec{B}=$ ha area fapallelegram with sides \vec{A} and \vec{A}. (vii) If $\vec{A} \times \vec{B}=0$ and \vec{A} and \vec{B} ate not null vectors, then \vec{A} and \vec{B} are parallel.

$$
\begin{aligned}
\text { Area of } \triangle P O Q & =\frac{b a s e \times \text { height }}{2} \\
& =\frac{(O P)(N Q)}{2} \\
& =\frac{A \times B \sin \theta}{2} 0 \quad \frac{\ddots}{N} \\
& =\frac{1}{2}|\vec{A} \times \vec{B}|
\end{aligned}
$$

\therefore Area of parallelogram OPRQ $=2[$ area of $\triangle O P Q]$

$$
=|\vec{A} \times \vec{B}|
$$

The diagonals of a parallelogram are vectors \vec{A} and \vec{B}. If $\vec{A}=5 \hat{i}-4 \hat{j}+3 \hat{k}$ and $\vec{B}=3 \hat{i}-2 \hat{j}-\hat{k}$. Calculate the magnitude of area of this parallelogram.
Seln. When \vec{A} and \vec{B} are the diagenals of a parallelogram, then its

$$
\begin{aligned}
\text { Area } & =\frac{1}{2}|\hat{A} \times \bar{B}|=\frac{1}{2}\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
5 & -4 & 3 \\
3 & -2 & -1
\end{array}\right| \\
& =\frac{1}{2}|\hat{i}(4+6)-\hat{j}(-5-9)+\hat{k}(-10+12)| \\
& =\frac{1}{2}|10 \hat{j}+14 \hat{j}+2 \hat{k}|=\frac{1}{2} \sqrt{(10)^{2}+(14)^{2}+(2)^{2}} \\
& =\frac{1}{2} \sqrt{300}=\frac{10}{2} \sqrt{3}=5 \sqrt{3} \text { wit }
\end{aligned}
$$

M11 Mrinhonk

If $|\vec{A}+\vec{B}|=|\vec{A}-\vec{B}|$, then sind the angle between \vec{A} and \vec{B}.
Soln.: $\because|\vec{A}+\vec{B}|=|\vec{A}-\vec{B}|$
$\therefore \sqrt{A^{2}+B^{2}+2 A B \cos \theta}=\sqrt{A^{2}+B^{2}-2 A B \cos \theta}$
or $A^{2}+B^{2}+2 A B \cos \theta=A^{2}+B^{2}-2 A B \cos$ ㅎ
or $4 A B \cos \theta=0$ or $\cos \theta=0$
$\therefore \quad \theta=90^{\circ}$

The resultant of two vectors \vec{P} and $\overrightarrow{\boldsymbol{Q}}$ is $\overline{\hat{N}}$ If $\overrightarrow{\boldsymbol{Q}}$ is doubled then the new resultane vector is perpendicular to \bar{P}. Then \bar{B} is equal to
(a) $\left(\frac{P^{2}-t^{2}}{2 P Q}\right)$
(b) Q
(c) $\frac{P}{Q}$
(d) $\frac{P+Q}{m-Q}$

