CRRCULAR MOTION

- Circular motion is a two dimensional motion.
- Angular displacement : The angular displacement of an object moving around a circular path is defined as the angle traced out by the radius vector at the centre of the circular path in a given time. It is denoted by symbol θ.
- Angular velocity : Angular velocity of an object in circular motion is defined as the rate of change of its angular displacement with time. It is generally denoted by symbol ω (omega) and it is given by

$$
\omega=\frac{d \theta}{d t}
$$

- SI unit of angular velocity is rad s^{-1} and its dimensional formula is [$\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{-1}$].
- Angular acceleration : Angular acceleration of an object in circular motion is defined as the rate of change of its angular velocity with time. It is generally denoted by symbol α and it is given by

$$
\alpha=\frac{d \omega}{d t}
$$

- SI unit of angular acceleration is $\mathrm{rad} \mathrm{s}^{-2}$ and its dimensional formula is $\left[\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{-2}\right]$.
- Uniform circular motion : When an object is moving on a circular path with a constant spead then the motion of an object is said to be a uniform circular motion.
- Time period : In circular motion, the time period is defined as the time taken by an object to complete one revolution on its circular path. It is generally denoted by symbol T and is expressed in second.
- Frequency : In circular motion, the frequency is defned as the number of revolutions completed by an object on its circular path in a unit time. It is generally denoted by v. Its unit is s^{-1} or hertz (Hz).
- Relation betweentime and frequency

$$
T=\frac{1}{v} \quad \text { or } v=\frac{1}{T}
$$

- Relation between angular velocity, frequency and time period

$$
\omega=\frac{2 \pi}{T}=2 \pi v
$$

- Centripetal acceleration : Acceleration acting on an object undergoing uniform circular motion is known as centripetal acceleration. It is given by
Centripetal acceleration, $a_{c}=\frac{v^{2}}{r}=()^{2} r$
where r is the radius of the circle.
- It always acts on an object along the radius towards the centre of the circular path.
- Centripetal acceleration is not constant vector.

Tangential Acceleration and Radial Acceleration

- Acceleration of an object in circular motion (or motion along any curved path) has two components :
- Tangestial acceleration : The tangential acceleration arises from the change in the speed of an object and has a magnitude given by

$$
a_{t}=\frac{d|\vec{j}|}{d t}
$$

- Radial acceleration : The radial acceleration is due to the change in direction of the velocity and is given by

$$
a_{r}=\frac{v^{2}}{r}=\omega^{2} r
$$

As a_{t} and a_{r} are perpendicular to each other as shown in figure.

$\therefore \quad$ Net acceleration, $|\vec{a}|=\sqrt{a_{t}^{2}+a_{r}^{2}}$
In uniform circular motion, $a_{t}=0$ but $a_{r} \neq 0$

Mestration 24

An astronaut is rotating in a rotor of radius 4 m . If he can withstand upto acceleration of 10 g , then what is the maximum number of permissible revolutions? ($g=10 \mathrm{~m} \mathrm{~s}^{-2}$)
Soln. : In case of uniform circular motion

$$
\begin{aligned}
& \left.a_{r}=\frac{v^{2}}{r}=\omega\right)^{2} r \quad[\text { as } v=r \omega] \\
& \text { or } a_{r}=(2 \pi f)^{2} r \quad \quad[\text { as } \omega=2 \pi f] \\
& \text { or } \quad f=\frac{1}{2 \pi} \sqrt{\frac{a_{r}}{r}} \\
& \text { Hence } a_{r}<10 \mathrm{~g} \text {, so }
\end{aligned}
$$

$$
f<\frac{1}{2 \pi} \sqrt{\frac{10 \times 10}{4}} \text { i.e. } f_{\max }=\left[\frac{5}{2 \pi}\right] \mathrm{rev} / \mathrm{sec}
$$

Illustration 25

A motor car is travelling at $30 \mathrm{~m} \mathrm{~s}^{-1}$ on a circular road of radius 500 m . It is increasing its speed at the rate of $2 \mathrm{~m} \mathrm{~s}^{-2}$, what is its acceleration?
Soln. : In this problem,

$$
\begin{aligned}
\boldsymbol{a}_{t} & =\frac{d v}{d t}=2 \mathrm{~m} \mathrm{~s}^{-2} \\
a_{r} & =\frac{v^{2}}{r}=\frac{30 \times 30}{500}=1.8 \mathrm{~m} \mathrm{~s}^{-2} \\
\text { so, } \quad a & =\sqrt{a_{r}^{2}}=\sqrt{(1.8)^{2}+(2)^{2}}=2.7 \mathrm{~m} \mathrm{~s}^{-2}
\end{aligned}
$$

