

INERTIA

- It is an inherent property of all the bodies by virtue of which they cannot change their state of rest or uniform motion along a straight line on their wn. uantitatively, inertia of a body is measured by it* mass. Thus, heavier the body greater is its inertia.

Types of inertia

Inertia of a body is of three types :

- Inertia of rest
- Inertia of motion
- Inertia of direction
- Inertia of rest : It is the inability of a body to change its state of rest byizelf. e.g., a person standing in a stationary bus falls backward when the bus suddenly stars moving.
- Inertia of motion : It is the inability of a body to change its state of uniform motion by itself.e.s.s. a person getting down a mowing bus or train talls forward.
- Inertia of direction: It is the inability of a body to change its direction of motion by itself. e.g., when a car suddenly wases a turn, the person sitting inside is thrown in the outward direction.

NEWTON S LAWS OF MOTION

Newton s First Law of Motion

- According to Newton's first law, every body continues to be in its state of rest or of uniform motion in a straight line, unless it is compelled by some external force to act otherwise.
- Newton's first law er motion can be expressed as; If the net eaterial force on a body is zero, its acceleration is zero. Acceleration can be non-zero only if there is a net extemal force on the body.
- Newton"s first law is also known as law of inertia.
- Momentum : Momentum of a body (\vec{b}) is defined as the product of its mass (m) and velocity (iv).
i.e., $\vec{p}=m \vec{v}$

The irection of momentum is same as that of the velocity.

- Mementum is a vector quantity. Its SI unit is $\mathrm{kgm} \mathrm{s}^{-1}$. Its dimensional formula is $\left[\mathrm{MLT}^{-1}\right]$.

Newtons Second Law of Wiotion

- According to Newton's second law of motion, the rate of change of momentum is directly proportional to the applied foree and takes place in the direction in which force acts,
$\vec{F}=k \frac{d \vec{F}}{d t}=b \vec{m} \vec{\alpha}$, as m is constant.
where \bar{F} is the net external force on the body and $\bar{\pi}$ its acceleration. In both SI and CGS systems constant of proportionality $k=1$.
- Newton's second law of motion gives us a measure for force.
- Newton"s second law is consistent with the first law ($\vec{F}=0$ implies $\bar{a}=0$).
- Newton's second law of motion is applicable toa particle, and also to a body or a system of particles provided \vec{F} is the total external force on the system and \vec{a} is the acceleration of system as a whole.
* Units of force : The units of force are of two types
- Absolute unit
- Gravitational unit
* Absolute unit : In SI system the absolute unit of ferce is newton. It is denoted by symbol N .
$1 \mathrm{~N}=1 \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-2}$
In CGS system the absolute unit of force is dyne.
1 dyne $=1 \mathrm{~g} \mathrm{~cm} \mathrm{~s}^{-2}$
- Relationship between newton and dyne
$1 \mathrm{~N}=10^{5}$ dyne
- Gravitational unit ; In Sl system, the gravitational unit of force is kilogram weight (kg wi) or kilogram ferce (kg i). 1 kg wt or $1 \mathrm{~kg} \mathrm{f}=5 \mathrm{~N}$.
\ln CGS system, the gravitational unit of force is gram weight ($\mathrm{g} w \mathrm{t}$) or gram force (g f).
1 g wt or $1 \mathrm{gf}=980$ dyne
- The gravitational unit of force is used to express the weight of a body. e.g., weight of a body of a mass 2 kg is 2 kg f or 2 kg w.
- Force is a vector quantity. Its dimensional formula is [MLT $^{-2}$].
- The swaight line along which a force is directed is called line of action of force.

A force $\vec{F}=(6 \hat{\hat{i}}-8 \hat{j}+10 \hat{k}) \mathrm{N}$ produces acceleration of $I \mathrm{~m} \mathrm{~s}^{-2}$ in a bedy. Calculate the mass of the body:
Soln.: $\because a=\frac{|F|}{m}$

$$
\therefore m=\frac{|\ddot{F}|}{a}=\frac{\sqrt{(6)^{2}+(-8)^{2}+(10)^{2}}}{1}=10 \cdot \sqrt{2} \mathrm{~kg}
$$

