* Averge power ; it is dened as the ratio of the work Δ, to the time Δt, i.e, $P_{\mathrm{av}}=\Delta W / \Delta t$.
3 Power is a scalar quantity. Its dimensional formula is $\left[\mathrm{ML}^{3} \mathrm{~T}^{-3}\right]$
- Units of power : In Sl system the absolute unitof power is wati. It is denotea by symbol. w.
1 watt $=1 \mathrm{Js}^{-1}$.
- In CGS system, the absolate unit of power is erg s${ }^{-1}$. $1 \mathrm{~W}=10^{7} \mathrm{erg} \mathrm{s}^{-1}$.
Pigger anits of power are
- 1 kilewatt $=1 \mathrm{~kW}=10^{3} \mathrm{~W}$
- 1 megawatt $=1 \mathrm{NW}=10^{6} \mathrm{~W}$
- In engineering horse power is the practical unit of power.
$1 \mathrm{hp}=746 \mathrm{~W}$.

A bedy of mass m, accelerates uniformly from rest to v_{1} in time i_{1}. Find the instantaneous power delivered to the boly as a fiunction of time t.

Soln : Acceleration, $a=\frac{v_{1}}{i_{1}}$
\therefore velocity, $(v)=0+a t=\frac{v_{i}}{t_{i}} t$
$\therefore \quad$ Power, $F=$ Force \times velocity $=m a v$
or $P=m\left(\frac{v_{1}}{t_{1}}\right) \times\left(\frac{v_{1} t}{t_{1}}\right)=\frac{m \nu_{1}^{2} t}{t_{1}^{2}}$.

An elevator can carry a maximum load of 1800 kg (elevator + passengers) is moving up with a constant speed of $2 \mathrm{~m} \mathrm{~s} \mathrm{~s}^{-1}$. The frictional force opposing the motion is 4900 N . Determine the minimum horse power delivered. by motor to the elevator.
Som.: The cownward force on the elevator is
$F=m g+F_{f}=(1800 \times 10\}+4000=22000 \mathrm{~N}$.
The motor must supply enough wew to balance this force. Hence, $P=\vec{F} \cdot \vec{p}=22000 \times 2=44000 \mathrm{~W}$.

COLLISTOM

- In physics a collis ion will take place if either of the twe bodies come in physical contact with each other or even when path on body is a fected by the force exerted due to the other.
- Collisions are broadly classifed into two types :
(i) Elastic collision: A collision in which both the momentam and kinetic energy of the body remains conserved. e.g. the collision between two glass bails. The basic characteristics of an elastic collision are
o Minentum is conserved.
o Total energy is conserved.
o Kinetic energy is conserved.
- Forces invelved is the interaction are conservative.
- Mechanical energy is not transformed into any other form of energy.
(i) Inelastice elifision: A collision in which only the momentum of the system is conserved but kinetic energy is not conserved. Most of the collisions fin om day to day life are inelastic collisions.
e.g. mud thrown on the wall.

The basic characteristics of an inelastic collision are

- Momentann is conserved.

O Total energy is conserved.

- Kinetic energy is not conserved.
- Some all of the torcs involved are non-conservave.
- A part or whole of the mechanical energy may be transformed into other foms of energy.

Clastic Colifision in one Dimension

- Consider two bodies A and B of masses m_{1} and m_{2} moving aloag the same straight line witi velocives ε_{1} and u_{2} respectively Assume that $u_{1}>u_{2}$ so that two bodies collide. Let v_{1} and v_{2} be the final velocities of the bodies after collision. The two bodies suffier head on collision and continue moving aleng the straight line in the same direction as shown in the figure.

- §pechal cases
- When masses of two bodies are equal, i.e. $m_{1}=m_{2}=m$.

From (i), we get $v_{1}=s_{2}$.
From (ii), ve get $v_{2}=\frac{2 m z_{1}}{2 m}=u_{1}$
Thus, if twe bodies of emual masses undergo elastic collision in one dimension, then atter the collision, the bodies will exchange their velocities.
0 When the body g is ini ally at rest i.e.s $u_{2}=0$.
From equation (i) and (ii), we get

$$
\begin{align*}
& v_{1}=\frac{\left(m_{1}-m_{2}\right) u_{1}}{m_{1}+m_{2}} \tag{iii}\\
& v_{2}=\frac{2 m_{1} u_{1}}{m_{1}+m_{2}} \tag{iv}
\end{align*}
$$

Three cases arise further :
(a) When masses of two bodies are equal
i. $m_{1}=m_{2}=m$

Frent (iii), we get $v_{1}=0$
From (iv) $)_{2}=u_{2}$
Therefore, when body A collides with body B of equal mass at rest, the body A comes to rest while the body E moves on with the velocity of the bedy A.
In this case, transfer of kinetic energy is handred percent.
(b) When the body B has negligible mass as compared to that of body A i.e., $m_{2} \ll m_{1}$ then in equations (iii) and (iv), m_{2} can be neglected as compared to m_{1}.

$$
\therefore \quad v_{1}=\frac{m_{1} u_{1}}{m_{1}}=u_{1}, \quad v_{2}=\frac{2 m_{1} u_{1}}{m_{1}}=2 u_{1}
$$

Therefore, when a heavy body A collides with a light body B at rest, the body A should keep on moving with same velocity and the body B starts moving with velocity double that of A.
(c) When a mass of body B is very large as compared to that of body A i.e., $m_{2} \gg m_{1}$ then in equations (iii) and (iv), m_{1} can be neglected as compared to m_{2}.

$$
v_{1}=-\frac{m_{2} \frac{u_{1}}{m_{2}}}{m_{2}}=-\boldsymbol{u}_{1}, \quad v_{2}=0
$$

Therefore, when a light body A collides with a heavy body B at rest, the body A should start moving with same velocity just in opposite direction while the body B should practically remain at rest.

Milistration 10

A body of mass m collides elastically with a stationary body of mass M. After collision, m has a speed equal to one-third of its initial speed. Calculate the ratio $(\mathrm{m} / \mathrm{M})$.
Soln. : $\quad v_{1}=\frac{\left(m_{1}-m_{2}\right) u_{1}}{\left(m_{1}+m_{2}\right)}$ when $u_{2}=0$
$\therefore \quad \frac{u_{1}}{3}=\frac{(m-M) u_{1}}{(m+M)}$
$\therefore \quad 3 m-3 M=m+M \quad$ or $\quad 2 m=4 M$
or $\quad \frac{m}{M}=\frac{4}{2}=\frac{2}{1}$.

Illustration 11

Two identical bodies A and B moving with velocities $13 \mathrm{~m} / \mathrm{s}$ and $-15 \mathrm{~m} / \mathrm{s}$ respectively collide head-on elastically. What will be their velocities after collision?
Soln. : When masses are equal, velocities are just interchanged after an elastic head-on collision.
$\therefore \quad$ After collision, velocity of $A=-15 \mathrm{~m} / \mathrm{s}$
velocity of $B=13 \mathrm{~m} / \mathrm{s}$

Ilustration 12

A massive ball moving with speed v collides with a tiny ball by negligible mass. The collision is elastic. Find the speed with which the second tiny ball will move.
Soln. : $v_{2}=\frac{2 m_{1} u_{1}}{\left(m_{1}+m_{2}\right)}$
Since $m_{1} \gg m_{2},\left(m_{1}+m_{2}\right)=m_{1}$
or $\quad v_{3}=\frac{2 m_{1} v}{m_{1}}=2 v$
$\therefore \quad$ Speed of second tiny ball $=2 v$.

Mustration 13

A neutron travelling with a velocity v and kinetic energy E collides head-on elastically with a nucleus of mass number A at rest. Calculate the fraction of total energy retained by the neutron.
Soln. : $v_{1}=\frac{\left(m_{1}-m_{2}\right) u_{1}}{\left(m_{1}+m_{2}\right)}$ while $u_{2}=0$.
$\therefore \quad v_{1}=\frac{(1-A) u_{1}}{(1+A)}$.
Neutron is ${ }_{0} n^{1}$. Its mass number $=1$.
Fraction of energy retained by neutron

$$
=\frac{\frac{1}{2} m v_{1}^{2}}{\frac{1}{2} m u_{1}^{2}}=\left(\frac{v_{1}}{u_{1}}\right)^{2}=\left(\frac{1-A}{1+A}\right)^{2}=\left(\frac{A-1}{A+1}\right)^{2}
$$

Perfectly Inelastic Collision in One Dimension

- Consider two bodies A and B of masses m_{1} and m_{2} moving with velocities u_{1} and $u_{2}\left(u_{2}<u_{1}\right)$ respectively along the same line collide head on and after collision they have same common velocity v.

According to conservation of linear momentum,

$$
\begin{equation*}
m_{1} u_{1}+m_{2} u_{2}=m_{1} v+m_{2} v \tag{i}
\end{equation*}
$$

or $v=\frac{m_{1} u_{1}+m_{2} u_{2}}{\left(m_{1}+m_{2}\right)}$
Kinetic energy of the system before collision is

$$
K_{I}=\frac{1}{2} m_{1} u_{1}^{2}+\frac{1}{2} m_{2} u_{2}^{2}
$$

Kinetic energy of the system after collision is

$$
K_{F}=\frac{1}{2}\left(m_{1}+m_{2}\right)_{2}{ }^{2}
$$

Loss in kinetic energy during collision,

$$
\begin{equation*}
\Delta K=K_{I}-K_{F}=\left[\frac{1}{2} m_{1} u_{1}^{2}+\frac{1}{2} m_{2} u_{2}^{2}\right]-\frac{1}{2}\left(m_{1}+m_{2}\right) v^{2} \tag{ii}
\end{equation*}
$$

Subs ituting the value of v from eqn. (i), we get

$$
\Delta K=\frac{1}{2} \frac{m_{1} m_{2}}{\left(m_{1}+m_{2}\right)}\left(u_{1}-u_{2}\right)^{2}
$$

Elastic Collision in Two Dimensions or Oblique Collision

- Let us consider two bodies A and B of masses m_{1} and m_{2} moving along X-axis with velocities u_{1} and u_{2} respectively. When $u_{1}>u_{2}$, the two bodies collide. After collision, body A moves with velocity v_{1} at an angle θ_{1} with X-axis and body B moves with a velocity r_{2} at an angle θ_{2} with X-axis as shown in the figure.

* Since the collision is elastic, kinetic energy is conserved.
$\frac{1}{2} m_{1} u_{1}^{2}+\frac{1}{2} m_{2} u_{2}^{2}=\frac{1}{2} m_{1} v_{1}^{3}+\frac{1}{2} m_{2} v_{2}^{2}$
Also momentum along X axis befere collision
$=$ momentum after collision along k-axis
$\Rightarrow m_{1} i_{1}+m_{2} u_{2}=m_{1} v_{1} \cos \omega_{1}+m_{2} v_{2} \cos \theta_{2}$
Similiarly along I-axis
$0=m_{1} v_{1} \sin \theta_{1}-m_{2} v_{2} \sin \theta_{2}$
Thus from these three equation (i), (ii) and (iii) we can find the required quantities.

A block of mass 0.50 kg is moving with a speed of $2.00 \mathrm{~m} \mathrm{~s}^{-1}$ on a smooth sufface. It strikes another mass of
1.0 kg and then they move together as a single body.

What is the energy loss during the collision?
Soln. : By the law of conservation of momenturn $m u=(m+m) v$

$$
0.50 \times 2.00=(1+0.50) \times \frac{1.0}{1.50}=\psi
$$

Initial K.E. $=(1 / 2) \times 0.50 \times(2.00)^{2}=1.00 \mathrm{~J}$.
Fmalk.E. $=\frac{1}{2} \times 1.50 \times \frac{1.00^{2}}{(1.50)^{2}}=\frac{1.00}{3.00}=0.33$
\therefore Loss of energy $=1.00-0.33 \approx 0.67 \mathrm{~J}$.

Coefficiant of Restitution

- It is defined as the ratio of relative velocity of separation after collision to the relative velocity of approach before collision. It is represented by e.
$e=\frac{\text { relative velocity of separation (affer collision) }}{\text { relative velocity of spproach (before collision) }}$.
$e=\frac{v_{2}-v_{1}}{u_{1}-u_{2}}$
where u_{1}, u_{2} are velocities of two bodies before collision, and v_{1}, v_{2} are their respective velocities anter collision.
- For perfectly elastic collision, $e=1$.
- For perfectly inelastic collision, $e=0$.
- A baill falls from a height h, it strikes the ground with a velocity $u=\sqrt{2 g}$. Let it rebound with a velocity v and rise to a aeight h_{1}. Then,
$e=\frac{v}{u}=\frac{\sqrt{2 g h_{1}}}{\sqrt{2 g h}}=\sqrt{\frac{h_{1}}{h}}$ or $\sqrt{h_{1}}=e \sqrt{h_{h}}$ or $h_{1}=e^{2} h$.
* A ball dropped frore height h and attaining height h_{n} after n rebounds. Then $h_{g}=e^{2 n} h$.
* A bali dropped from height h and travelling a total distance S befere coming to rest.
Then $S=j\left[\frac{1+e^{2}}{1-e^{2}}\right]$
3 A bail drepped fim a height h and rebounding. The time taken by the ball in rising to height h, and coming back is

$$
2 \sqrt{\frac{2 h_{4}}{g}}=2 a^{\frac{2 h}{g}}
$$

Note that $h_{1}=e^{2} h$.
Total time taken by the ball in coming to rest is

$$
t=\frac{1+e}{1-e \sqrt{\frac{2 h}{g}}}
$$

A simple pendulim is suspended from a pes on a vertical wall. The pendulum is pulled away from the wall to a horizontal position (see fg.) and released. The ball hit the wall, the co-efficient of restitution being $\frac{2}{\sqrt{5}}$.

What is the minimum number of collisions after which the amplitude of oscillations becomes less than 60 degree?
Soln : The bob is released from herizontal position $O A$. It travels akong $A C B$. At $C_{\text {, }}$ let the angular displacement be $\delta 0^{\circ}$.

$$
O D=L \cos 60^{\circ}-\frac{L}{2}
$$

Velocity at E when the ball starts from $A=v_{s}$.
$\therefore m g L=\frac{1}{2} m v^{3}$

or $\forall_{B}=\sqrt{2 g Z_{1}}$
The welocity at B when the ball starts from $C=v_{\beta}^{\prime}$
$\therefore m g \frac{L_{2}}{2}=\frac{1}{2} m\left(v_{B}^{\prime}\right)^{2} \Rightarrow v_{B}^{\prime}=\sqrt{z^{2}}$
It means that the velocity of bob is reduced from $\sqrt{2 g h}$ to $\sqrt{g Z}$ due to collisions with wall. Let e dense co-efficient. of restitution.
Let $n=$ number of collisions.

$$
\therefore \quad e^{n}(\sqrt{2 \operatorname{dg} x})=\sqrt{E L} \text { or }\left(\frac{2}{\sqrt{5}}\right)^{n} \times \sqrt{2}=1
$$

or $n \log 2-\frac{n}{2} \log 5+\frac{1}{2} \log 2=0$
By solving, we get $n=3.1$
$\therefore \quad$ Number of collision $=4$.

