CONCEPT MAP

Motion of System of Particle and Rigid Body

entre of mass : Centre of ass of a system is defined as at point where whole mass the system is supposed to concentrated for the mslational motion of the stem.
ngular velocity : It is the time te of change of angular
isplacement, $\vec{\omega}=\frac{d \theta}{d t}$
$\dot{i}=\vec{\omega} \times \vec{p}$
Moment of force or Torque : It is equal to the product of force and perpendicular distance $\vec{\tau}=r^{*} \times \vec{F} ;|\vec{\tau}|=r F \sin \theta=r F_{\mid}=r_{1} F$

Moment of inertia : It is the pantity that measures the inertinn frotational motionol the body. ora particle, $I=m r^{2}$

$$
I=\int r^{2} d m
$$

Init: $\mathrm{kg} \mathrm{m}^{2}$

Kinetic energy and M.I. : Tho energy possessed by the body on account of its rotation abrut a given axis is the kinetic energy of otation

$$
\text { i.e., } \quad K E=\frac{1}{2} I(\omega)^{2}
$$

Two particle system : The position vector of CM of two particle

$$
\vec{R}=\frac{m_{1} \vec{r}_{1}+m_{2} \bar{\Gamma}_{2}}{m_{1}+m_{2}}
$$

Angular acceleration : It is the time rate of change of angular

$$
\vec{a}=\frac{d \vec{\omega}}{d l}, \vec{a}=\vec{a} \times \vec{r}
$$

Relation between torque and angular acceleration

$$
\overline{\mathfrak{\tau}}=I \bar{\alpha}
$$

Angular momentum : It is the product of linear momentum and perpendicular distance of line of action of linear momentum vector from the axis of rotation, in vector form

$$
\hat{L}=\vec{r} \times \bar{p}
$$

Radius of gyration : It is equal to the root mean square distance of the constituent particles of the body from the given axis,

$$
K=\frac{\sqrt{r_{1}^{2}+r_{2}^{2}+\ldots .+r_{n}^{2}}}{v} I=M 2 K^{2}
$$

Work done by torque τ in rotating a body by an angle θ

$$
=\int_{0}^{0} c d \theta
$$

Instantancous powet, $P=\tau(1)$

Equations of
rotational motion : $\quad\left[\begin{array}{c}\text { Law of conservation of angular } \\ \text { momentum: If no external }\end{array}\right.$ rotational motion :

- $(\omega)=()_{0}+\alpha t$ mentum:ifno external torcque acts on a system, the total angrilar momentum of the system remains conserved.

$$
I \stackrel{F}{\tilde{\tau}} \overrightarrow{e x t}=0 ; \frac{d \vec{L}}{d t}=0
$$

$\therefore \vec{L}=$ constant
Also, $I_{1} \omega_{1}=I_{2} \omega_{2}$

Symbis lisu

[^0]
[^0]: $m_{1}, m_{2}=$ mass of particles
 $\vec{R}=$ position vector of centre of mass
 $\vec{r}_{1}, \vec{r}_{2}=$ position vector of particles
 $M=$ total mass
 $\dddot{\omega}=$ angular velocity
 $\vec{d}=$ angular displacement
 $\vec{\tau}=$ moment of fince or torque
 $\vec{E}=$ angular monentum
 $\vec{p}=$ linear momentum
 $\overrightarrow{a r}_{0}=$ initial angular velocity
 $\vec{\alpha}=$ angular acceleration
 $K=$ radius of gyration
 $n=$ number of particles
 $l=$ moment of inertia
 $I_{\mathrm{cm}}=$ moment of incrtia about centre of mass
 $I_{x}, I_{y^{\prime}}, I_{z}=$ memetil of inctia about x, y and z axcs
 respectively
 M.I. = moment of inertia

