* The latent heat of a sustance is given by

$$
L=\frac{2}{m}
$$

where m is the mass of a substance.

* The SI unit of latent heat is $J \mathrm{~kg}^{-1}$ while practical unit is cal g^{-1}.
* Eatent heat of fusion : It is the amount of heat required to change unit mass of the solid into liquid at constent temperature e.g. latent heat of fision of ice $=\$ 0 \mathrm{cal} \mathrm{g}^{-1}$.
- Eatent hear of vaporisation : It is the amount of heat required to change unit mass of the liquid into vapour at constant temperature. e.g. latent heat of vaporisation of water $=540 \mathrm{cal} \mathrm{g}^{-1}$.

PFINCIPLE OF CALORMETRY

- When two bodies at different temperatures are placed in contact with each other then heat will pass from the body at higher temperature to the body at lower temperature until both reach a common temperature. i.e. heat lost by one body m heat gained by the other.
- Principle of caloximetry obeys law of conservation of energy.

A. Centigrade and a Fahrenheit thermometer are dipped in boiling water. The water temperature is lowered until the Fahrenheit thermometer registers 140°. What is the fall in temperature as registered by the Centigrade thermometer?
(a) 30°
(b) $4{ }^{\circ}$
(c) 60°
(d) 80^{12}

Soln. (b) : The relation between Centigrade and Fahrenhest scale is as follows:

$$
C=\frac{5}{9}(F-32)
$$

Here the Fahrenheit temperature is $140^{\circ} \mathrm{F}$, so

$$
T_{\text {finat }}=\frac{5}{9}(140-32) \Rightarrow T_{\text {fnal }}=60^{\circ} \mathrm{C}
$$

The fall in temperature fom the boiling point

$$
=100^{\circ} \mathrm{C}-60^{\circ} \mathrm{C}=40^{\circ} \mathrm{C}
$$

\Rightarrow (b) is correct.

Two liquids A and B are at $32^{\circ} \mathrm{C}$ anid $24^{\circ} \mathrm{C}$. When mixed in equal masses, the temperature of mixture is found t be $28^{\circ} \mathrm{C}$. Their specific heats are in the ratio of
(a) $3: 2$
(b) $2: 3$
(c) $1: 1$
(d) $4: 3$

Soln. (a) : When mixed, the heat gained by liquid B is equal to heat lost by liguid A.
The tinal temperature of the mixture is $28^{\circ} \mathrm{C}$. Heat lost by

$$
A=m_{A} S_{A}(32-28)
$$

Heat gained by $B=m_{B} s_{B}(28-24)$
$m_{A} s_{A}(32-28)=m_{s} s_{B}(28-24)$
As $\pi z_{A}=m_{\mathcal{S}_{B}} \Rightarrow s_{A}=s_{B}$ or $s_{A}: s_{Z_{A}}=1: 1$
$\Rightarrow \quad(c)$ is correct.

A metallic rod 1 cm long and 1 sq. cm in cross-section is heated to $t^{\circ} \mathrm{C}$. If the linear expansion is a per degree centigrade and Y is the Young*s modulus, the force required to prevent the rod fom expanding is
(a) Yot
(b) $\frac{Y a t}{1+c a t}$
(c) $\frac{Y \alpha t}{1-t}$
(d) None of these

Soliz. (fas) : If the rod is heated, thermal expansion

$$
\Delta I \Leftrightarrow \alpha \cdot I \cdot \Delta T=(1 \mathrm{~cm})\left(f^{\circ} \mathrm{C}\right)
$$

If the rod is not allowed to expand by appiying a force, it means a mechanical compression equal to the thermal expansion has been produced by applying the force.
Now, $y=\left(\frac{F}{A}\right) \cdot\left(\frac{A}{l}\right), Y=\frac{F l}{A A l}$ or $F=\operatorname{VA}\left(\frac{\Delta l}{l}\right)$

$$
F=\chi A(\omega t) \text { As } A=1 \mathrm{~cm}^{2}
$$

$F=Y \alpha A \Rightarrow$ (${ }^{2}$) is correct.

The absolute coefficient of expansion of a liquid is 7 times that of the volume coefficient of expansion of the vessel. Then the ratio of absolute and apparent expansion of the liquid is
(a) $\frac{1}{7}$
(b) $\frac{7}{6}$
(c) $\frac{6}{7}$
(d) none of these

Soln. (6): Given: $\gamma_{\text {liquid }}=7 \gamma_{\text {vessel }}$

$$
\begin{aligned}
& \Delta V_{\text {Absobse }}=\gamma_{\text {liquid }} V \Delta T=T \gamma_{\text {vescl }} \cdot V \Delta T \\
& \Delta V_{\text {vessel }}=\gamma_{\text {vessiel }} V \Delta T \\
& \Delta V_{\text {Apparen.t }}=\Delta V_{\text {liquid }}-\Delta V_{\text {vessel }} \\
& \\
& \left.\left.=V \cdot \Delta T \gamma_{\text {liquid }}-\gamma_{\text {vesel }}\right)=V \cdot \Delta T T \gamma_{\text {vessel }}-\gamma_{\text {vessel }}\right) \\
& \Rightarrow \Delta V_{\text {Apparent }}=V \cdot \Delta T\left(6 \gamma_{\text {vessel }}\right) \ldots(i \mathrm{ik}\}
\end{aligned}
$$

Eguation (1) diviaed by equation (2), we get,

$$
\frac{\Delta V_{\text {Absslute }}}{\Delta V_{\text {Apparent }}} \quad \gamma_{\text {Absolutes }}=\frac{7 \gamma_{\text {vessel }} \cdot V \Delta T}{6 \gamma_{\text {Apparent }}}=\frac{7}{6 A T}=\frac{7}{6}
$$

$\Rightarrow(b)$ is correct.

HEAT TRAESFER

* The three modes of heat transfer are conduction, convection and radiation.
- Condection : It is the process in which heat is transmitted from one point to the other through the substance without the acmal motion of the particles.
* Convection : If is the process in which heat is transmitted from one piace to the other by the actual movement of the heated particies. It is prominent in the case of liquids and gases. Land and sea breezes and trade winds are formed due to convection. Convection plays an important role in ventilation, gas filled electric lamps and heating of buildings by hot water circulation.
- Radiation : It is the process in. which heat is transmitted from one place to the other directly without the necessity of the intervening medium.
* Heat from the sun reaches the earth by sadiation.
- Radiation is the fastest mode of heat transfer.
- When a bar of length L and uniform area of cross-section A with its ends maintained at temperatures T_{1} and T_{2}, the rate of flow of heat (or heat current) H is given by

$$
H=\frac{K A\left(T_{1}-T_{2}\right)}{L}
$$

where K is the thermal conductivity of the material of the bar.

- Thermal conductivity depends upon the nature of material.
- The SI unit of thermal conductivity K is $\mathrm{J} \mathrm{s}^{-3} \mathrm{~m}^{-1} \mathrm{~K}^{-1}$ or W $\mathrm{m}^{-1} \mathrm{~K}^{-1}$ while practical unit is $\mathrm{cal} / \mathrm{cm} \mathrm{s}^{\circ} \mathrm{C}$. The dimensional formula of K is $\left[\mathrm{MLT}^{-3} \mathrm{~K}^{-1}\right]$.

Wiedemann-Franz Law

- According to this law the ratio of the thermal and electrical conductivities is the same for all metals at the same temperature. Moreover, the ratio is directly proportional to the absolute temperature of the metal.

$$
\begin{aligned}
& \frac{\frac{K}{\sigma}}{\text { i.e., } \frac{K}{\sigma T}=\text { a constant, }}
\end{aligned}
$$

where $K=$ thermal conductivity, $\sigma=$ electrical conductivity, $T=$ the temperature in kelvin.

- Thermal resistance of the bar, $R_{H}=\frac{L}{K A}$.
- Comparison of heat conduction with electrical conduction

Electrical conduction	Thermal conduction
Electrical charge flows from higher potential to lower potential	Heat flows from higher temperature to lower temperature
The rate of flow of charge heat is called electric current	The rate of flow of is called as heat current
By Ohm's law,	Heat current $H=\frac{V_{1}-V_{2}}{R}$
Electrical resistance, $R=\rho \frac{L}{A}=\frac{L}{\sigma A}$	
where ρ is resistivity and σ is conductivity	Thermal resistance, $R_{H}=\frac{L}{K A}$ where K is thermal conductivity

- The flow of heat through rods in series and parallel is analogous to the flow of current through resistances in series and parallel.

Growth of Ice on Lakes

- The water in a lake freezes when the temperature of the air in contact with it falls below $0^{\circ} \mathrm{C}$. The density of ice is less than that of water and so the ice formed floats on the surface of water.

Let x be the thickness of layer so formed. Let the temperature of air just above ice be $-T^{\circ} \mathrm{C}$ and the temperature of water below ice in the lake be $0^{\circ} \mathrm{C}$. The thickness of layer of ice will increase when heat from water below ice conducts through the ice layer already formed.
Let the cross-sectional area of the ice be A. Suppose the thickness of ice increases by $d x$ in a time $d t$.

- Time taken by ice to grow a thickness x is given by

$$
t=\frac{1}{2} \frac{\rho L x^{2}}{K T}
$$

where K is the thermal conductivity of ice, ρ is the density of ice, L is the latent heat of fusion of ice.

- Time taken to double and triple the thickness will be in the ratio
$t_{1}: t_{2}: t_{3}:: 1^{2}: 2^{2}: 3^{2}$
$t_{1}: t_{2}: t_{3}:: 1: 4: 9$

STEFAN-BOLT ZMANN LAW

- It states that the radiant energy emitted by a perfectly black body per unit area per sec (i.e., radiancy or intensity of black body radiation) is directly proportional to the fourth power of its absolute temperature

$$
\text { i.e. } E \propto T^{4} \text { or } E=\sigma T^{4}
$$

where σ is a constant called Stefan's constant.

- The value of σ in S.I. unit is $5.67 \times 10^{-8} \mathrm{~W} \mathrm{~m}^{-2} \mathrm{~K}^{-4}$.
- If the body is not a perfectly black body, then

$$
E=e \sigma T^{4}
$$

where e is the emissivity of the body and has value 0 $<e<1$ depending upon the nature of surface. It has no units and dimensions.

- The energy radiated per second by a body of area $A=e A \sigma 1^{4}$
- A body at temperature T with surroundings temperature $T_{S}\left(T>T_{S}\right)$, the net rate of loss of radiant energy is

$$
=e A \sigma\left(T^{4}-T_{s}^{4}\right)
$$

NEWUTON'S LAVK OF COOLING

- It states that the rate of cooling of a body is proportional to the excess temperature of the body over the surroundings.

$$
\frac{d Q}{d t}=-k\left(T-T_{S}\right)
$$

where T_{S} is the temperature of the surrounding medium and T is the temperature of the body.

WIEN'S DISPLACEMENT LAW

- According to this law, the product of wavelength corresponding to maximum energy and the absolute temperature is constant.
- i.e., $\lambda_{m} T=$ constant
- The value of Wien's constant is $2.9 \times 10^{-3} \mathrm{mK}$.
- The value of solar constant, $S=1340 \mathrm{Wm}^{-2}$.
- Temperature of sun is given by $T=\left(\frac{R^{2} S}{R_{s}^{2} \sigma}\right)^{1 / 4}$ where R is the mean distance of the earth from the sun, R_{s} is the radius of the sun, S is solar constant and σ is Stefan's constant.

Two slabs of thickness d_{1} and d_{2} and of conductivities K_{1} and K_{2} are placed in contact and combination behaves as a single slab of conductivity K given by
(a) $\frac{d_{1}}{K_{1}}$
(b) $d_{1} K_{1}+d_{1} K_{2}=Z^{*}$
(c) $\frac{d_{1}}{K_{1}}+\frac{d_{2}}{K_{2}}=\frac{d_{1}+d_{2}}{K}$
(d) $K\left(d_{1}+d_{2}\right)=K_{1} K_{2} d_{1} d_{2}$

Sola, (c) : Thermal resistances behave analogous to electical resistances.
In series,

$$
\begin{gathered}
R_{\text {eg }}=R_{1}+R_{2} \text { Now } K_{\text {Chrmai }}=\frac{\Delta x}{K A} \\
\text { Here, } \frac{\left(d_{1}+d_{2}\right)}{K A}=\frac{d_{1}}{K_{1} A}+\frac{d_{2}}{K_{2} A}=\frac{d_{1}}{K_{1}}+\frac{d_{2}}{K_{2}}=\frac{d_{1}+d_{2}}{K} .
\end{gathered}
$$

$\Rightarrow \quad$ (c) is correct.

17n+1 5

A sphere is at a temperature 600 K . Its cooling rate is R in an exiernal environment of 200 K . Its temperature falls to 400 K , then cooling rate R^{\prime} will be
(a) $\frac{3}{16} R$
(b) $\frac{16}{3} R$
(c) $\frac{9}{27} R$
(d) None of these

Solm. (a) : From Stefan's law, net rate of heat energy lost per second

$$
R=\varepsilon \sigma A\left(T^{-4} \cdots T_{0}^{4}\right)
$$

where T is the temperature of the body and γ_{0} is the temperature of the surroundings.
Here $R=\cos A\left(600^{4}-200^{4}\right)$

$$
\begin{aligned}
& R^{\prime}=\operatorname{coA}\left(400^{4}-200^{4}\right) \Rightarrow \frac{R^{\prime}}{R}=\left[\frac{400^{4}-200^{4}}{600^{4}-200^{4}}\right] \\
& R^{\prime}=\left(\frac{4^{4}-2^{4}}{6^{4}-2^{4}}\right) R
\end{aligned}
$$

Hence, $R^{\prime}=\frac{3}{16} R . \Rightarrow($ a) is correct.

Hustration 4

A black body has maximum wavelength $\lambda_{\text {m }}$ at 2000 K . Its correspmang wavelength at 3000 K will be
(a) $\frac{3}{2} \hat{\lambda}_{m}$
(b) $\frac{2}{3} \lambda_{m}$
(c) $\frac{16}{81} \lambda_{3}$
(d) $\frac{81}{16} \lambda_{m}$

Solit. (b) : Using Wien's displacement law,

$$
\lambda_{\max }-T=\text { constant }
$$

Here $\lambda_{m}^{\prime} \cdot(3000 \mathrm{~K})=\lambda_{m}(2000 \mathrm{~K}) \Rightarrow \lambda_{\mathrm{m}}^{\prime}:=\frac{2}{3} \lambda_{m^{\prime}}$
\Rightarrow (b) is correct.

Thurwaty

The plots of intensity versus wavelength for three black bodies at temperatures T_{1}, T_{2} and T_{3} respectively are shown.

Which, of these temperatures are the lowest and the highest? Grade T_{1}, T_{2} and T_{3}.

Solm: According to Wien's law,

$$
\lambda_{\pi} \eta^{t}=\text { constzat } \Rightarrow T=\frac{\text { Constant }}{\lambda_{m}}
$$

where λ_{m} is the wavelength a a maximum intensity.
From grapi, $\lambda_{1}<\lambda_{2}<\lambda_{3}$
i.e. λ_{3} is the highest and λ_{1} is the lowest.
$\because \quad \lambda_{3}$ corresponds with \bar{Z}_{2} on graph,
$\therefore \quad F_{2}$ is the lowest temperature
Similarly, λ_{1} corresponds with temperature T_{1}
$\therefore \quad T_{1}$ is the highest temperature, because λ_{1} is the lewest $\therefore \quad T_{1}>T_{3}>T_{2}$.

A body takes 10 min to cool from $60^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$. Temperature of surroundings is $25^{\circ} \mathrm{C}$. Find the temperature of body after next 10 min .
Solm.: According to principle of rate of cooling,

$$
\frac{\theta_{1}-\theta_{2}}{t}=\mathrm{k}\left[\frac{\theta_{1}+\theta_{2}}{2}-\theta_{0}\right]
$$

where $\theta_{0}=$ room temperature

$$
\begin{align*}
& \therefore \quad \frac{50-50}{10}=K\left[\frac{60+50}{2}-25\right]=K \times 30 \\
& K=\frac{1}{3} \tag{i}
\end{align*}
$$

After another $i 0$ min, let the temperature be θ.

$$
\begin{align*}
& \therefore \quad \frac{50-\theta}{10}=\kappa\left[\frac{50+\theta}{2}-25\right] \\
& \text { or } \quad \frac{10}{50-6}=\frac{30 \times 2}{6} \Rightarrow 0=42.85^{\circ} \mathrm{C} \tag{a}
\end{align*}
$$

$\therefore \quad 3.2 .425^{\circ} \mathrm{C}$.

GREEN MOUSE EFFECT

- The earth's atmosphere is the transparent to visible radiations and infra-red radiations from sun. The earth absorbs all these radiations and releases longer wavelengtb infra-red radiations which can not pass through lower atmosphere, 䗳ey get absoribed by atoresphere molecules leading to rise in the earth's temperature. This phenomenon is called green house effect. The green house elect keeps the earth's surfiace warm at night. However, an increased concentration of gases like CO_{2} which absorbs infrared radiations is causing global warming which is now a matter international concern.

