

Two slabs of thickness d_{1} and d_{2} and of conductivities K_{1} and K_{2} are placed in contact and combination behaves as a single slab of conductivity K given by
(a) $\frac{d_{1}}{K_{1}}$
(b) $d_{1} K_{1}+d_{1} K_{2}=Z^{*}$
(c) $\frac{d_{1}}{K_{1}}+\frac{d_{2}}{K_{2}}=\frac{d_{1}+d_{2}}{K}$
(d) $K\left(d_{1}+d_{2}\right)=K_{1} K_{2} d_{1} d_{2}$

Sola, (c) : Thermal resistances behave analogous to electical resistances.
In series,

$$
\begin{gathered}
R_{\text {eg }}=R_{1}+R_{2} \text { Now } K_{\text {Chrmai }}=\frac{\Delta x}{K A} \\
\text { Here, } \frac{\left(d_{1}+d_{2}\right)}{K A}=\frac{d_{1}}{K_{1} A}+\frac{d_{2}}{K_{2} A}=\frac{d_{1}}{K_{1}}+\frac{d_{2}}{K_{2}}=\frac{d_{1}+d_{2}}{K} .
\end{gathered}
$$

$\Rightarrow \quad$ (c) is correct.

17n+1 5

A sphere is at a temperature 600 K . Its cooling rate is R in an exiernal environment of 200 K . Its temperature falls to 400 K , then cooling rate R^{\prime} will be
(a) $\frac{3}{16} R$
(b) $\frac{16}{3} R$
(c) $\frac{9}{27} R$
(d) None of these

Solm. (a) : From Stefan's law, net rate of heat energy lost per second

$$
R=\varepsilon \sigma A\left(T^{-4} \cdots T_{0}^{4}\right)
$$

where T is the temperature of the body and γ_{0} is the temperature of the surroundings.
Here $R=\cos A\left(600^{4}-200^{4}\right)$

$$
\begin{aligned}
& R^{\prime}=\operatorname{coA}\left(400^{4}-200^{4}\right) \Rightarrow \frac{R^{\prime}}{R}=\left[\frac{400^{4}-200^{4}}{600^{4}-200^{4}}\right] \\
& R^{\prime}=\left(\frac{4^{4}-2^{4}}{6^{4}-2^{4}}\right) R
\end{aligned}
$$

Hence, $R^{\prime}=\frac{3}{16} R . \Rightarrow($ a) is correct.

Hustration 4

A black body has maximum wavelength $\lambda_{\text {m }}$ at 2000 K . Its correspmang wavelength at 3000 K will be
(a) $\frac{3}{2} \hat{\lambda}_{m}$
(b) $\frac{2}{3} \lambda_{m}$
(c) $\frac{16}{81} \lambda_{3}$
(d) $\frac{81}{16} \lambda_{m}$

Solit. (b) : Using Wien's displacement law,

$$
\lambda_{\max }-T=\text { constant }
$$

Here $\lambda_{m}^{\prime} \cdot(3000 \mathrm{~K})=\lambda_{m}(2000 \mathrm{~K}) \Rightarrow \lambda_{\mathrm{m}}^{\prime}:=\frac{2}{3} \lambda_{m^{\prime}}$
\Rightarrow (b) is correct.

Thurwaty

The plots of intensity versus wavelength for three black bodies at temperatures T_{1}, T_{2} and T_{3} respectively are shown.

Which, of these temperatures are the lowest and the highest? Grade T_{1}, T_{2} and T_{3}.

Solm: According to Wien's law,

$$
\lambda_{\pi} \eta^{t}=\text { constzat } \Rightarrow T=\frac{\text { Constant }}{\lambda_{m}}
$$

where λ_{m} is the wavelength a a maximum intensity.
From grapi, $\lambda_{1}<\lambda_{2}<\lambda_{3}$
i.e. λ_{3} is the highest and λ_{1} is the lowest.
$\because \quad \lambda_{3}$ corresponds with \bar{Z}_{2} on graph,
$\therefore \quad F_{2}$ is the lowest temperature
Similarly, λ_{1} corresponds with temperature T_{1}
$\therefore \quad T_{1}$ is the highest temperature, because λ_{1} is the lewest $\therefore \quad T_{1}>T_{3}>T_{2}$.

A body takes 10 min to cool from $60^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$. Temperature of surroundings is $25^{\circ} \mathrm{C}$. Find the temperature of body after next 10 min .
Solm.: According to principle of rate of cooling,

$$
\frac{\theta_{1}-\theta_{2}}{t}=\mathrm{k}\left[\frac{\theta_{1}+\theta_{2}}{2}-\theta_{0}\right]
$$

where $\theta_{0}=$ room temperature

$$
\begin{align*}
& \therefore \quad \frac{50-50}{10}=K\left[\frac{60+50}{2}-25\right]=K \times 30 \\
& K=\frac{1}{3} \tag{i}
\end{align*}
$$

After another $i 0$ min, let the temperature be θ.

$$
\begin{align*}
& \therefore \quad \frac{50-\theta}{10}=\kappa\left[\frac{50+\theta}{2}-25\right] \\
& \text { or } \quad \frac{10}{50-6}=\frac{30 \times 2}{6} \Rightarrow 0=42.85^{\circ} \mathrm{C} \tag{a}
\end{align*}
$$

$\therefore \quad 3.2 .425^{\circ} \mathrm{C}$.

GREEN MOUSE EFFECT

- The earth's atmosphere is the transparent to visible radiations and infra-red radiations from sun. The earth absorbs all these radiations and releases longer wavelengtb infra-red radiations which can not pass through lower atmosphere, 䗳ey get absoribed by atoresphere molecules leading to rise in the earth's temperature. This phenomenon is called green house effect. The green house elect keeps the earth's surfiace warm at night. However, an increased concentration of gases like CO_{2} which absorbs infrared radiations is causing global warming which is now a matter international concern.

