

The bulk modulus of a metal is $8 \times 10^{9} \mathrm{~N} \mathrm{~m}^{-2}$. Its density is $11 \mathrm{~g} \mathrm{~cm}^{-3}$. What will be the density of metal under a pressure of $20,000 \mathrm{~N} \mathrm{~cm}^{-2}$?
Soln.: Bulk modulus, $B=-\frac{P V}{\Delta V}$
$\therefore \quad \Delta V=-\frac{P V}{B}=-\frac{2 \times 10^{4} \times 10^{4} V}{8 \times 10^{9}}=-\frac{V}{40}$
$\therefore \quad$ New volume $=V-\frac{V}{40}=\frac{39 \mathrm{~V}}{40}$.
Let the new density of metal $=\rho^{\prime}$ gram cm^{-3}.
$\therefore \quad$ Mass of metal $=\frac{39 \mathrm{~V}}{40} \times \rho^{\prime}$
or $\quad V \times 11=\frac{39 V}{40} \times \rho^{\prime} \quad$ or $\quad \rho^{\prime}=\frac{440}{39} \frac{\mathrm{gram}}{\mathrm{cm}^{3}}$.

POISSON'S RATIO (σ)

- Poisson's ratio, $\sigma=\frac{\text { Lateral strain }}{\text { Longitudinal strain }}=\frac{-\Delta r / r}{\Delta L / L}$ -ve sign shows that if the length increases, then the radius of the wire decreases.
- $\quad \sigma$ has no units and dimensions.
- Theoretically, σ lies between -1 and $+\frac{1}{2}$.
- Practically σ lies between zero and $+\frac{1}{2}$.

RELATION BETWEEN $\boldsymbol{y}, \boldsymbol{B}, G$ AND σ

- $Y=3 B(1-2 \sigma)$
- $Y=2 G(1+\sigma)$
- $\sigma=\frac{3 B-2 G}{2 G+6 B}$
- $\frac{9}{Y}=\frac{1}{B}+\frac{3}{G}$

Elastic Potential Energy Stored in a Stretched Wire and Breaking Force

- Elastic potential energy stored in a stretched wire $=$ work done in stretching the wire $=\frac{1}{2} \times$ stretching force \times extension in length of wire

$$
\begin{aligned}
& U=\frac{1}{2} F \times \Delta L=\frac{1}{2} \frac{F}{A} \times \frac{\Delta L}{L} \times A L \\
& U=\frac{1}{2} \times \text { stress } \times \text { strain } \times \text { volume }
\end{aligned}
$$

- Elastic potential energy stored per unit volume of a stretched wire

$$
\begin{aligned}
u=\frac{1}{2} \times \text { stress } \times \text { strain } & =\frac{1}{2} \times Y \times(\text { strain })^{2} \\
& =\frac{1}{2} \times \frac{1}{Y} \times(\text { stress })^{2}
\end{aligned}
$$

- Breaking force $=$ Breaking stress \times Area of cross section of the wire.

MHstanion

The area of cross-section of railway track is $0.01 \mathrm{~m}^{2}$. The temperature variation is $10^{\circ} \mathrm{C}$. Coefficient of linear expansion of steel $=10^{-5} /{ }^{\circ} \mathrm{C}$.
(Young's modulus of steel $=10^{11} \mathrm{Nm}^{-2}$)
Calculate the energy stored per meter in the track.
Soln.: Let $\alpha=$ coefficient of linear expansion.
$\therefore \quad$ Elastic energy $=\frac{1}{2} \times$ stress \times strain \times volume
or $U=\frac{1}{2} \times(Y \times$ strain $) \times$ strain \times volume
or $U=\frac{1 \times Y \times(\text { strain })^{2} \times \text { volume }}{2}$
$\alpha=\frac{l}{L \times t}=\frac{\text { strain }}{t}$
$\because \alpha=\frac{\text { change in length }}{\text { original length } \times \text { temperature change }}$
or \quad strain $=\alpha t$
$\therefore \quad U=\frac{Y \times \alpha^{2} t^{2} \times(\text { area } \times \text { length })}{2}$
or $\quad U=\frac{10^{11} \times\left(10^{-5}\right)^{2} \times(10)^{2} \times 0.01 \times 1}{2}=5 \mathrm{~J}$
$\therefore \quad$ Energy stored $=5 \mathrm{~J}$.

SOME IMPORTANT FACTS ABOUT ELASTICITY

- Young's modulus is numerically equal to the normal stress which will double the length of a wire.
- Elongation in a wire by its own weight : If a wire of length L and cross-sectional area A is stretched by a force F, then by the defnition of Y,

$$
\Delta L=\frac{F L}{A Y} \quad\left[\text { As } Y=\frac{F L}{A \Delta L}\right]
$$

In case of elongation by its own weight, $(F=M g)$ will act at centre of gravity of the wire, so that length of wire which is stretched is $(L / 2)$.

$$
\therefore \Delta L=\frac{M g(L / 2)}{A Y}=\frac{M g L}{2 A Y}=\frac{\rho g L^{2}}{2 Y} \quad[\text { As } M=\rho A L]
$$

- Thermal stress : If a rod is fixed between two rigid supports, due to change in temperature its length will change and so it will exert a normal stress on the supports. This stress is called as thermal stress.
Thermal stress $=Y \alpha \Delta T$
where α is the coefficient of linear expansion and ΔT is the change in temperature.
- Interatomic force constant (k)

$$
k=\frac{\text { Interatomic force }}{\text { Change in interatomic distance }}=\frac{F_{0}}{\Delta r}
$$

- If the Young's modulus for a material is Y and the equilibrium distance between the atom is r_{0}, then $k_{0}=Y r_{0}$
- In case of twisting of a cylinder (or wire) of length L and radius r, elastic restoring couple per unit twist is given by

$$
C=\frac{\pi G r^{4}}{2 L}
$$

where G is modulus of rigidity of the material of wire.

- Depression of a beam loaded at the middle by a load W and supported at the ends is

$$
\delta=\frac{W L^{3}}{4 \cdot I_{g}^{I}}
$$

where L is the length of a beam, Y is the Young's modulus for the material of the beam, and I_{g} is the geometrical moment of inertia.
For a beam of circular cross-section of radius r,

$$
I_{g}=\frac{\pi r^{2}}{4}
$$

For a beam of rectangular cross-section of breadth b and thickness $d, I_{g}=\frac{b d^{3}}{12}$

FEUBDS

- Those substances which can flow are called as fluids. Fluids include both liquids and gases.
- We study about fluids at rest in hydrostatics and about fluids in motion in hydrodynamics.

DENSITY

- Density of a substance is defined as the mass per unit volume of the substance.
Density, $\rho=\frac{\text { Mass (M) }}{\text { Volume }(V)}$
- Density is a positive scalar quantity. Its dimensional formula is $\left[\mathrm{ML}^{-3} \mathrm{~T}^{0}\right]$. The SI unit of density is $\mathrm{kg} \mathrm{m}{ }^{-3}$ and CGS unit is $\mathrm{g} \mathrm{cm}^{-3}$.

$$
1 \mathrm{~g} \mathrm{~cm}^{-3}=10^{3} \mathrm{kgm}^{-3}
$$

- Density of substance means the ratio of mass of the substance to the volume occupied by the substance while density of a body means the ratio of mass of a body to the volume of the body. For a solid body:, Density of body = Density of substance For a hollow body, density of body is lesser than that of substance [As $\left.V_{\text {body }}>V_{\text {substance }}\right]$.
- When immiscible liquids of different densities are poured in a container, the liquid of highest density will be at the bottom while that of lowest density at the top and interfaces will be plane.
- The maximum density of water at $4^{\circ} \mathrm{C}(277 \mathrm{~K})$ which is $1.0 \times 10^{3} \mathrm{~kg} \mathrm{~m}^{-3}$.
- A liquid is largely incompressible and its density is therefore, nearly constant at all pressures. Gases, on the other hand, exhibit a large variation in densities with pressure.
- 否elative demsity : Relative density of a substance is defined as the ratio of its density to the density of water at $4^{\circ} \mathrm{C}$.
Relative density $=\frac{\text { Density of a substance }}{\text { Density of water at } 4^{\circ} \mathrm{C}}$
- Relative density is a positive scalar quantity. It has no units and dimensions.
- Relative density is also known as specificic gravity.
- The value of relative density of a substance is same in both CGS and SI system.
- If two liquids of masses m_{1}, m_{2} and densities ρ_{1}, ρ_{2} are mixed together, then the density of the mixture is given by

$$
\begin{gathered}
\rho=\frac{m_{1}+m_{2}}{\left(m_{1} / \rho_{1}\right)+\left(m_{2} / \rho_{2}\right)} \\
\text { If } m_{1}=m_{2}=m, \rho=\frac{m+m}{\left(m / \rho_{1}\right)+\left(m / \rho_{2}\right)}=\frac{2 \rho_{1} \rho_{2}}{\rho_{1}+\rho_{2}}
\end{gathered}
$$

- If two liquids of volume V_{1} and V_{2} of density ρ_{1} and ρ_{2} are mixed together then density of the mixture,

$$
p=\frac{p_{3} V_{1}+\rho_{2} V_{2}}{V_{1}+V_{2}} \mathbb{I f} V_{1}=V_{2}=V \quad \rho=\frac{\left(\rho_{1}+\rho_{2}\right)}{2}
$$

PRESSIRER

- Thrust : The total normal force exerted by liquid at rest on a given surface in contact with it is called thrst of liquid on that surface.
- Pressure : It is defined as the thrust acting per unit area of the surface in contact with liquid.

$$
P=\frac{\operatorname{Thrust}(F)}{\operatorname{Area}(A)}=\frac{F}{A}
$$

- Pressure is a scalar quantity. Its dimensional formula is $\left[\mathrm{ML}^{-1} \mathrm{~T}^{-2}\right]$.
- The SI unit of pressure is $\mathrm{N} \mathrm{m}^{-2}$. It has been named as pascal (Pa) in the honour of French scientist Blaise Pascal.
- Other common units of pressure are :

```
- l atm= 1.01 }\times1\mp@subsup{0}{}{5}\textrm{Pa
- l bar = 10 P Pa
- l torr = 133 Pa
- 1mmof Kg=1 torr = 133 Pa.
```

- Atmospheric pressure: The pressure exerted by atmosphere is called atmospheric pressure.At S.T.P. the value of atmospheric pressure is $1.01 \times 10^{5} \mathrm{~N} \mathrm{~m}^{-2}$ or 1.01×10^{6} dyne cm^{2}.

Tlustrathon 9

10 g of a liquid of density $5 \mathrm{~g} \mathrm{~cm}^{-3}$ is mixed with 12 g of another immiscible liquid of density $4 \mathrm{~g} \mathrm{~cm}^{-3}$. Find the density of mixture.
Soln.: Density of mixture $=\frac{[\text { Total mass of mixture }]}{[\text { Total volume of mixture }]}$
or Density of mixture, $D=\frac{m_{1}+m_{2}}{\frac{m_{1}}{\sigma_{1} \sigma_{2}}}=\frac{\sigma_{1} \sigma_{2}\left(m_{1}+m_{2}\right)}{m_{1} \sigma_{2}+m_{2} \sigma_{1}}$
$\therefore D=\frac{5 \times 4(10+12)}{10 \times 4+12 \times 5}=\frac{20 \times 22}{40+60}$
$=\frac{20 \times 22}{100}=4.4 \mathrm{~g} \mathrm{~cm}^{-3}$.
\therefore Density of mixture of liquids $=4.4 \mathrm{~g} \mathrm{~cm}^{-3}$.

