- Turbulent flow : It is that flow of liquid, in which a liquid moves with a velocity greater than its critical velocity. The motion of the particles of liquid becomes disorder or irregular.
- In this flow, every particle of the liquid does not follow the path of its preceding particle and has not the same velocity in magnitude and direction as that of the preceding particle, while crossing a given point.
- In turbulent flow, the two streamlines cross each other.

CRITICAL VELOCITY

- It is that velocity of liquid flow, upto which the flow of liquid is streamlined and above which its flow becomes turbulent. Critical velocity of a liquid (v_{c}) flowing through a tube is given by

$$
\nu_{c}=\frac{K \eta}{\rho r}
$$

where ρ is the density of liquid flowing through a tube of radius r and η is the coefficient of viscosity of liquid.

REYNOLDS NUMBER

- It is a pure number which determines the nature of flow of liquid through a pipe. According to Reynold, the critical velocity v_{c} of a liquid flowing through a tube of diameter D is given by

$$
v_{c}=\frac{N_{R} \eta}{\rho D} \quad \text { or } \quad N_{R}=\frac{\rho D v_{c}}{\eta}
$$

where η is the coefficient of viscosity of the liquid, ρ is the density of liquid and N_{R} is a constant called Reynolds number.

- If the value of Reynolds number lies between 0 to 2000, the flow of liquid is streamlined or laminar. For values of N_{R} above 3000, the flow of liquid is turbulent and for val ues of N_{R} between 2000 to 3000 , the flow of liquid is unstable changing from streamline to turbulent.

Mustration 12

Eight identical drops of water are falling through air with a steady velocity of $10 \mathrm{~cm} \mathrm{~s}^{-1}$. All the drops merge into one bigger drop. Calculate the terminal velocity of bigger drop.
Soln.: Let $R=$ radius of bigger drop $r=$ radius of each small drop
Equate volumes when the 8 drops merge into one.
$\therefore \quad \frac{4}{3} \pi R^{3}=8 \times \frac{4}{3} \pi r^{3}$
$\therefore \quad R=2 r$
$\therefore \quad R=2 r$
Since terminal velocity $V=\frac{2}{9} \frac{(\rho-\sigma) r^{2} g}{\eta}$
$\therefore \quad \frac{\text { Terminal velocity of bigger drop }}{\text { Terminal velocity of smaller drop }}=\frac{R^{2}}{r^{2}}$
or $\frac{V}{10}=\left(\frac{2 r}{r}\right)^{2}=4 \quad$ or $\quad V=40 \mathrm{~cm} \mathrm{~s}^{-1}$.

IIfustration 13

Three capillaries of intemal radii $2 r, 3 r$ and $4 r$, all of the same length, are joined end to end. A liquid passes through the combination and the pressure difference across this combination is 20.2 cm of mercury. The pressure difference across the capillary of intemal radius $2 r$ is
(a) 2 cm of Hg
(b) 4 cm of Hg
(c) 8 cm of Hg
(d) 16 cm of Hg

Soln. (d) : $V=\frac{\pi P r^{4}}{8 \eta l}$
As capillaries of same length are joined end to end, the volume rate V across each of the capillaries is same.
Here, $P_{1} \cdot r_{1}{ }^{4}=P_{2} \cdot r_{2}{ }^{4}=P_{3} \cdot r_{3}{ }^{4}$
or $\quad P_{1}(2 r)^{4}=P_{2}(3 r)^{4}=P_{3}(4 r)^{4} \Rightarrow 16 P_{1}=81 P_{2}=256 P_{3}$

$$
P_{1}=\frac{81}{16} P_{2}=16 P_{3} \Rightarrow P_{2}=\frac{16}{81} P_{1} \text { and } P_{3}=\frac{P_{1}}{\underline{16}}
$$

It is given that:

$$
\begin{aligned}
& \left(P_{1}+P_{2}+P_{3}\right)=20.2 \mathrm{~cm} \text { of } \mathrm{Hg} \\
\Rightarrow & P_{1}\left(1+\frac{16}{81}+\frac{1}{16}\right)=20.2 \\
\text { or } & P_{1}\left(\frac{(81 \times 16)+(16 \times 16)+81}{81 \times 16}\right)=20.2
\end{aligned}
$$

$$
P_{1}=20.2\left[\frac{1296}{1296+256+81}\right] \approx 16 \mathrm{~cm} \text { of } \mathrm{Hg}
$$

$\Rightarrow \quad(\mathrm{d})$ is correct.

EQUATION OF CONTINUITY

- If an incompressible and non-viscous liquid flowing through a tube of non-uniform cross-section with steady flow, the product of the area of cross-section and the velocity of flow remains same at every point in the tube.

$A_{1} v_{1}=A_{2} v_{2}$
$A v=$ constant.
This equation is known as continuity equation.
- In the steady flow of an incompressible liquid mass of the liquid flowing per second through a cross-section of the tube is constant.
i.e. $A, \rho=$ constant.
- In a streamline flow, the volume of the liquid flowing per second through a cross-section of the tube $=A v$ where A is the area of cress-section and v is the velocity of the liquid flowing over that cross-section.
- The equation of continuity represents the conservation of mass in case of moving fluids.

