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is misleading. The gas is full of activity and the
equilibrium is a dynamic one. In dynamic
equilibrium, molecules collide and change their
speeds during the collision. Only the average
properties are constant.

Atomic theory is not the end of our quest, but
the beginning. We now know that atoms are not
indivisible or elementary. They consist of a
nucleus and electrons. The nucleus itself is made
up of protons and neutrons. The protons and
neutrons are again made up of quarks. Even
quarks may not be the end of the story. There
may be string like elementary entities. Nature
always has surprises for us, but the search for
truth is often enjoyable and the discoveries
beautiful. In this chapter, we shall limit ourselves
to understanding the behaviour of gases (and a
little bit of solids), as a collection of moving
molecules in incessant motion.

13.3   BEHAVIOUR OF GASES

Properties of gases are easier to understand than
those of solids and liquids. This is mainly
because in a gas, molecules are far from each
other and their mutual interactions are
negligible except when two molecules collide.
Gases at low pressures and high temperatures
much above that at which they liquefy (or
solidify) approximately satisfy a simple relation
between their pressure, temperature and volume
given by (see Ch. 11)

PV = KT (13.1)

for a given sample of the gas.  Here T is the
temperature in kelvin or (absolute)  scale.  K is
a constant for the given sample but varies with
the volume of the gas. If we now  bring in  the
idea of atoms or molecules then K is proportional
to the number of molecules, (say) N in the
sample. We can write K = N k . Observation tells
us that this k is same for all gases. It is called
Boltzmann constant and is denoted by k

B
.
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  = constant = kB (13.2)

if P, V and T are same, then N is also same for
all gases. This is Avogadro’s hypothesis, that  the
number of molecules per unit volume is same
for all gases at a fixed temperature and pressure.
The number in 22.4 litres of any gas is 6.02 
1023.  This is known as Avogadro number  and
is denoted by NA. The mass of 22.4 litres of any
gas is equal to its molecular weight in grams at
S.T.P (standard temperature 273 K and pressure
1 atm). This amount of substance is called a
mole (see Chapter 2 for a more precise definition).
Avogadro had guessed the equality of numbers
in equal volumes of gas at a fixed temperature
and pressure from chemical reactions.  Kinetic
theory justifies this hypothesis.

The perfect gas equation can be written as

PV = μ RT (13.3)

where  μ   is the number of moles and R  = NA
kB is a universal constant. The temperature T is
absolute temperature.  Choosing kelvin scale for

John Dalton (1766- 1844)

He was an English chemist. When different types of atoms combine,
they obey certain simple laws. Dalton’s atomic theory explains these
laws in a simple way. He also gave a theory of colour
blindness.

Amedeo Avogadro (1776 – 1856)

He made a brilliant guess that equal volumes of gases
have equal number of molecules at the same
temperature and pressure. This helped in
understanding the combination of different gases in

a very simple way. It is now called Avogadro’s hypothesis (or law). He also
suggested that the smallest constituent of gases like hydrogen, oxygen and
nitrogen are not atoms but diatomic molecules.
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absolute temperature, R = 8.314 J mol–1K–1.
Here

0 A

M N

M N
   (13.4)

where M is the mass of the gas containing N
molecules, M0 is the molar mass and NA the
Avogadro’s number. Using  Eqs. (13.4) and (13.3)
can also be written as

PV = kB NT or P = kB nT

P (atm)
Fig.13.1 Real gases approach ideal gas behaviour

at low pressures and high temperatures.

where  n is the number density, i.e. number of
molecules per unit volume. kB is  the Boltzmann
constant introduced above. Its value in SI units
is 1.38  10–23 J K–1.

Another useful form of Eq. (13.3) is

0

RT
P

M

  (13.5)

where ρ is the mass density of the gas.
A gas that satisfies Eq. (13.3) exactly at all

pressures and temperatures is defined to be an
ideal gas. An ideal gas is a simple theoretical
model of a gas. No real gas is truly ideal.
Fig. 13.1 shows departures from ideal gas
behaviour for a real gas at three different
temperatures. Notice that all curves approach
the ideal gas behaviour for low  pressures and
high temperatures.

At low pressures or high temperatures the
molecules are far apart and molecular
interactions are negligible. Without interactions
the gas behaves like an ideal one.

If we fix μ and T in Eq. (13.3), we get

PV = constant (13.6)

i.e., keeping temperature constant, pressure of
a given mass of gas varies inversely with volume.
This is the famous Boyle’s law. Fig. 13.2  shows
comparison between experimental P-V curves
and the theoretical curves predicted by Boyle’s
law. Once again you see that the  agreement is
good at high temperatures and  low pressures.
Next, if you fix P, Eq. (13.1) shows that V ∝  T
i.e., for a fixed pressure, the volume of a gas is
proportional to its absolute temperature T
(Charles’ law). See Fig. 13.3.

Fig.13.2 Experimental P-V curves (solid lines) for
steam at three temperatures compared
with Boyle’s law (dotted lines). P is in units
of 22 atm and V in units of 0.09 litres.

Finally, consider a mixture of non-interacting
ideal  gases: μ

1
  moles of gas 1, μ

2
 moles of gas

2, etc. in a vessel of volume V at temperature T
and  pressure P. It is then found that the
equation  of state of the mixture is :

PV = ( μ1 + μ2 +…  ) RT (13.7)

i.e. 1 2 ...
RT RT

P
V V

     (13.8)

= P1 + P2 + … (13.9)

Clearly P1 =    μ1 R T/V   is the pressure gas 1
would  exert at the same conditions of volume
and  temperature if no other gases were present.
This is called the partial pressure of the gas.
Thus, the total pressure of a mixture of ideal
gases is the sum of partial pressures. This is
Dalton’s law of partial pressures.
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Fig. 13.3 Experimental T-V curves (solid lines) for
CO2 at three pressures compared with
Charles’ law (dotted lines). T is in units of
300 K and V in units of 0.13 litres.

We next consider some examples which give
us information about the volume occupied by
the molecules and the volume of a single
molecule.

Example 13.1 The density of water is  1000
kg m–3. The density of water vapour at 100 °C
and 1 atm pressure is 0.6 kg m–3. The
volume of a molecule multiplied by the total
number gives ,what is called, molecular
volume. Estimate the ratio (or fraction) of
the molecular volume  to the total volume
occupied by the water vapour under the
above conditions of temperature and
pressure.

Answer For  a given mass of water molecules,
the density is less if volume is large. So the
volume of the vapour is  1000/0.6  = /(6 10 -4 )
times larger.  If densities of bulk water and water
molecules are same, then the fraction of
molecular volume to the total volume in liquid
state is 1. As volume in vapour state has
increased, the fractional volume is less by the
same amount, i.e.  610-4.       

Example 13.2   Estimate the volume of a
water molecule using the data in Example
13.1.

Answer In the liquid (or solid) phase, the
molecules of water are quite closely packed. The

density of water molecule may therefore, be
regarded as roughly equal to the density of bulk
water = 1000 kg m–3. To estimate the volume of
a water molecule, we need to know the mass of
a single water molecule. We know that 1 mole
of water has a mass approximately equal to

(2 + 16)g  = 18 g  =  0.018 kg.
Since 1 mole   contains  about   6  1023

molecules   (Avogadro’s  number),   the mass of
a molecule of water is  (0.018)/(6  1023) kg  =
3  10–26 kg.   Therefore, a rough estimate of the
volume of a water  molecule is as follows :

Volume of a water molecule
= (3  10–26 kg)/ (1000 kg m–3)
= 3  10–29 m3

= (4/3) π  (Radius)3

Hence, Radius ≈ 2 10-10  m = 2 Å   

Example 13.3   What is the average
distance between atoms   (interatomic
distance) in water? Use the data given in
Examples 13.1 and 13.2.

Answer :   A given mass of water in vapour state
has 1.67103 times the volume of the same mass
of water in liquid state (Ex. 13.1). This is also
the increase in the amount of volume available
for each molecule of water. When volume
increases by 103 times the radius increases by
V1/3 or 10 times, i.e., 10  2 Å  = 20 Å. So the
average distance is 2  20 = 40  Å.   

Example 13.4 A vessel contains two non-
reactive gases : neon (monatomic) and
oxygen (diatomic). The ratio of their partial
pressures is 3:2. Estimate the ratio of  (i)
number of molecules and (ii) mass density
of neon and oxygen in the vessel. Atomic
mass of Ne = 20.2 u, molecular mass of O2
= 32.0 u.

Answer Partial pressure of a gas in a mixture is
the pressure it would have for the same volume
and temperature if it alone occupied the vessel.
(The total pressure of a mixture of non-reactive
gases is the sum of partial pressures due to its
constituent gases.) Each gas (assumed ideal)
obeys the gas law. Since V and T are common to
the two gases,  we  have  P1V = μ 1 RT and P2V =
μ2 RT, i.e. (P1/P2) = (μ1 / μ2). Here 1 and 2 refer
to neon and oxygen respectively. Since (P1/P2) =
(3/2) (given), (μ1/ μ2) = 3/2.
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(i) By definition μ1 = (N1/NA ) and μ2 = (N2/NA)
where N1 and N2 are the number of molecules
of 1 and 2, and NA is the Avogadro’s number.
Therefore, (N1/N2) = (μ1 / μ2)  = 3/2.

(ii) We can also write μ1 = (m1/M1) and μ2 =
(m2/M2) where m1 and m2 are the masses of
1 and 2; and M1 and M2 are their molecular
masses. (Both m1 and M1; as well as m2 and
M2 should be expressed in the same units).
If ρ1 and ρ2  are the mass densities of 1 and
2 respectively,  we have

1 1 1 1 1

2 2 2 2 2

/
/

m V m M

m V m M

  
  

  
        

3 20.2
0.947

2 32.0
     

13.4 KINETIC THEORY OF AN IDEAL GAS

Kinetic theory of gases is based on the molecular
picture of matter. A given amount of gas is a
collection of a large number of molecules
(typically of the order of Avogadro’s number) that
are in incessant random motion. At ordinary
pressure and temperature, the average distance
between molecules is a factor of 10 or more than
the typical size of a molecule (2 Å). Thus the
interaction between the molecules is negligible
and we can assume that they move freely in
straight lines according to Newton’s first law.
However, occasionally, they come close to each
other, experience intermolecular forces and their
velocities change.  These interactions are called
collisions.  The molecules collide incessantly
against each other or with the walls and change
their velocities.  The collisions are considered to
be elastic. We can derive an expression for the
pressure of a gas based on the kinetic theory.

We begin with the idea that molecules of a
gas are in incessant random motion, colliding
against one another and with the walls of the
container. All collisions between molecules
among themselves or between molecules and the
walls are elastic. This implies that  total kinetic
energy is conserved. The total momentum is
conserved as usual.

13.4.1 Pressure of an Ideal Gas

Consider a gas enclosed in a cube of side l. Take
the axes to be parallel to the sides of the cube,
as shown in Fig. 13.4.  A molecule with velocity

(vx, vy, vz ) hits the planar wall parallel to yz-
plane of area A (= l2). Since the collision is elastic,
the molecule rebounds with the same velocity;
its y and z components of velocity do not change
in the collision but the x-component reverses
sign. That is, the velocity after collision is
(-vx, vy, vz ) . The change in momentum of the
molecule is :  –mvx – (mvx) = – 2mvx . By the
principle of conservation of momentum, the
momentum imparted to the wall in the collision
= 2mvx .

To calculate the force (and pressure) on the
wall, we need to calculate momentum imparted
to the wall per unit time. In a small time interval
Δt, a molecule with x-component of velocity vx
will hit the wall if it is within the distance vx Δt
from the wall. That is, all molecules within the
volume Avx Δt only can hit the wall in time Δt.
But, on the average, half of these are moving
towards the wall and the other half away from
the wall. Thus the number of molecules with
velocity (vx, vy, vz )  hitting the wall in time Δt is
�A vx  Δt n where n is the number of molecules
per unit volume. The total momentum
transferred to the wall by these molecules in
time Δt   is :

Q = (2mvx) (� n A vx Δt ) (13.10)
The force on the wall is the rate of momentum

transfer Q/Δt  and pressure is force per unit
area :

P =  Q /(A Δt)  =  n m vx
2 (3.11)

Actually, all molecules in a gas do not have
the same velocity; there is a distribution in
velocities.  The  above equation therefore, stands
for pressure due to the group of molecules with
speed vx  in  the x-direction and n stands for the
number density of that group of molecules. The

Fig. 13.4 Elastic collision of a gas molecule with
the wall of the container.
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