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the slower one and so there is more of the lighter
molecule (enrichment) outside the porous
cylinder (Fig. 13.5). The method is not very
efficient and has to be repeated several times
for sufficient enrichment.].

When gases diffuse, their rate of diffusion is
inversely proportional to square root of the
masses (see Exercise 13.12 ). Can you guess the
explanation from the above answer?

Fig. 13.5  Molecules going through a porous wall.

Example 13.7  (a)  When a molecule (or
an elastic ball) hits a ( massive) wall, it
rebounds with the same speed. When a ball
hits a massive bat held firmly, the same
thing happens. However, when the bat is
moving towards the ball, the ball rebounds
with a different speed. Does the ball move
faster or slower? (Ch.6 will refresh your
memory on elastic collisions.)

(b) When gas in a cylinder is compressed
by pushing in a piston, its temperature
rises. Guess at an explanation of this in
terms of kinetic theory using (a) above.

(c) What happens when a compressed gas
pushes a piston out and expands. What
would you observe ?
(d) Sachin Tendulkar uses a heavy cricket
bat while playing. Does it help him in
anyway ?

Answer  (a)  Let the speed of the ball be u  relative
to the wicket behind the bat. If the bat is moving
towards the ball with a speed V  relative to the
wicket, then the relative speed of the ball to bat

is V + u  towards the bat. When the ball rebounds
(after hitting the massive bat) its speed,  relative
to bat,  is V + u  moving away from the bat. So
relative to the wicket the speed of the rebounding
ball is V + (V + u) = 2V + u, moving away from
the wicket. So the ball speeds up after the
collision with the bat. The rebound speed will
be less than u if the bat is not massive. For a
molecule this would imply an increase in
temperature.

You  should be able to answer (b) (c) and (d)
based on the answer to (a).
(Hint: Note the correspondence, piston  bat,

cylinder  wicket, molecule  ball.)         

13.5  LAW OF EQUIPARTITION OF ENERGY

The kinetic energy of a single molecule is
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For a gas in thermal equilibrium at
temperature T  the average value of energy

denoted by   < t > is

2 2 21 1 1 3
2 2 2 2t x y z Bmv mv mv k T     (13.23)

Since there is no preferred direction, Eq. (13.23)
implies

21 1
    

2 2x Bmv k T  ,
21 1

    
2 2y Bmv k T ,

21 1
    

2 2z Bmv k T (13.24)

A molecule free to move in space needs three
coordinates to specify its location. If it is
constrained to move in a plane it needs two;and
if constrained to move along a line, it needs just
one coordinate to locate it. This can also be
expressed in another way. We say that it  has
one degree of freedom for motion in a line, two
for motion in a plane and three for motion in
space. Motion of a body as a whole from one
point to another is called translation. Thus, a
molecule free to move in space has three
translational degrees of freedom. Each
translational degree of freedom contributes a
term that contains square of some variable of
motion, e.g., � mvx

2  and similar terms in
vy and vz. In, Eq. (13.24) we see that in thermal
equilibrium, the average of each such term is
� kBT .
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Molecules of a monatomic gas like argon have
only translational degrees of freedom. But what
about a diatomic gas such as O2 or N2? A
molecule of O2 has three translational degrees
of freedom. But in addition it can also rotate
about its centre of mass. Figure 13.6 shows the
two independent axes of rotation 1 and 2, normal
to the axis joining the two oxygen atoms about
which the molecule can rotate*. The molecule
thus has two rotational degrees of freedom, each
of which contributes a term to the total energy
consisting of translational energy t  and
rotational energy  r.

2 2 2 2 2
1 1 2 2

1 1 1 1 1
2 2 2 2 2t r x y zmv mv mv I I          (13.25)

Fig. 13.6 The two independent axes of rotation of a
diatomic molecule

where ω1 and ω2  are the angular speeds about
the axes 1 and 2 and I1, I2 are the corresponding
moments of inertia. Note that each rotational
degree of freedom contributes a term to the
energy that contains square of a rotational
variable of motion.

We have assumed above that the O2 molecule
is a ‘rigid rotator’, i.e. the molecule does not
vibrate. This assumption, though found to be
true (at moderate temperatures) for O2, is not
always valid. Molecules like CO even at moderate
temperatures have a mode of vibration, i.e. its
atoms oscillate along the interatomic axis  like
a one-dimensional oscillator, and contribute a
vibrational energy term εv to the total energy:

2
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2 d 2v

y
m ky

t
         

t r v        (13.26)

where k is the force constant of the oscillator
and y the vibrational co-ordinate.

Once again the vibrational energy terms in
Eq. (13.26) contain squared terms of vibrational
variables of motion y and dy/dt .

At this point, notice an important feature in
Eq.(13.26). While each translational and
rotational degree of freedom has contributed only
one ‘squared term’ in Eq.(13.26), one vibrational
mode contributes two ‘squared terms’ : kinetic
and potential energies.

Each quadratic term occurring in the
expression for energy is a mode of absorption of
energy by the molecule. We have seen that in
thermal equilibrium at absolute temperature T,
for each translational mode of motion, the
average energy is � kBT.  A most elegant principle
of classical statistical mechanics (first proved
by Maxwell) states that this is so for each mode
of energy: translational, rotational and
vibrational. That is, in equilibrium, the total
energy is equally distributed in all possible
energy modes, with each mode having an average
energy equal to  � kBT. This is known as the
law of equipartition of energy. Accordingly,
each translational and rotational degree of
freedom of a molecule contributes � kBT  to the
energy while each vibrational frequency
contributes 2  � kBT  = kBT ,  since a vibrational
mode has both kinetic and potential energy
modes.

The proof of the law of equipartition of energy
is beyond the scope of this book. Here we shall
apply the law to predict the specific heats of
gases theoretically. Later we shall also discuss
briefly, the application to specific heat  of solids.

13.6  SPECIFIC HEAT CAPACITY

13.6.1 Monatomic Gases

The molecule of a monatomic gas has only three
translational degrees of freedom. Thus, the
average energy of a molecule at temperature
T is (3/2)kBT .   The total internal energy of a
mole of such a gas is

* Rotation along the line joining the atoms has very small moment of inertia and does not come into play for
quantum mechanical reasons. See end of section 13.6.
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3 3
 

2 2B AU k T N RT   (13.27)

The molar specific heat at constant volume,
Cv, is

 Cv (monatomic gas) = 
d
d
U

T
 =

3
2

RT (13.28)

For an ideal gas,
C

p
 – C

v
 = R (13.29)

where C
p
 is the molar specific heat at constant

pressure.  Thus,

C
p
 = 5

2
 R    (13.30)

The ratio of specific heats p

v

5
3

C

C
      (13.31)

13.6.2 Diatomic Gases

As explained earlier, a diatomic molecule treated
as a rigid rotator like a dumbbell has 5 degrees
of freedom : 3 translational and 2 rotational.
Using the law of equipartition of energy, the total
internal energy of a mole of such a gas is

5 5
2 2B AU k T N RT   (13.32)

The molar specific heats are then given by

C
v
 (rigid diatomic) = 
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R (13.33)

γ (rigid diatomic) = 
7

5
(13.34)

If the diatomic molecule is not rigid but has
in addition a vibrational mode
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13.6.3 Polyatomic Gases

In general a polyatomic molecule has 3
translational, 3 rotational degrees of freedom
and a certain number ( f ) of vibrational modes.
According to the law of equipartition of energy,
it is easily seen that one mole of such a gas has

U = (3

2
 k

B
T + 3

2
 k

B
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T ) N

A

i.e. C
v
 = (3 + f ) R,  C

p
 = (4 + f ) R,

  
  

f

f
 

  
 

  
(13.36)

Note that Cp – Cv = R is true for any ideal
gas, whether mono, di or polyatomic.

Table 13.1 summarises the theoretical
predictions for specific heats of gases ignoring
any vibrational modes of motion. The values are
in good agreement with experimental values of
specific heats of several gases given in Table 13.2.
Of course, there are discrepancies between
predicted and actual values of specific heats of
several other gases (not shown in the table), such
as Cl2, C2H6 and many other polyatomic gases.
Usually, the experimental values for specific
heats of these gases are greater than the
predicted values given in Table13.1 suggesting
that the agreement can be improved by including
vibrational modes of motion in the calculation.
The  law of equipartition of energy is thus well

Nature of
Gas

Cv

(J mol�1 K�1)

Cp

(J mol�1 K�1)

Cp � Cv

(J mol�1 K�1)

�

Monatomic 12.5 20.8 8.31 1.67

Diatomic 20.8 29.1 8.31 1.40

Triatomic 24.93 33.24 8.31 1.33

Table 13.1 Predicted values of specific heat
capacities of gases (ignoring
vibrational modes),

Table13.2 Measured values of specific heat
capacities of some gases
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