ALIERNALING CURRENT

1. AC AND DC CURRENT:

A current that changes its direction periodically is called alternating current (AC). If a current maintains its direction constant it is called direct current (DC).

3. ROOT MEAN SQUARE VALUE:

Root Mean Square Value of a function, from t, to t2, is defined as

$$f_{rms} = \sqrt{\frac{\int_{t_1}^{t_2} f^2 dt}{t_2 - t_1}}$$
.

4. POWER CONSUMED OR SUPPLIED IN AN AC CIRCUIT:

Average power consumed in a cycle = $\frac{\int_{0}^{2\pi} Pdt}{\frac{2\pi}{\omega}} = \frac{1}{2} V_{m} I_{m} \cos \phi$ $= \frac{V_{m}}{\sqrt{2}} \cdot \frac{I_{m}}{\sqrt{2}} \cdot \cos \phi = V_{rms} I_{rms} \cos \phi.$

Here $\cos \phi$ is called **power factor**.

5. SOME DEFINITIONS:

The factor $\cos \phi$ is called **Power factor**. $I_m \sin \phi$ is called **wattless current**.

Impedance Z is defined as Z = $\frac{V_m}{I_m} = \frac{V_{rms}}{I_{rms}}$

 ωL is called inductive reactance and is denoted by X_L

 $\frac{1}{\omega \textbf{C}}$ is called **capacitive reactance** and is denoted by $\textbf{X}_{\text{c.}}$

6. PURELY RESISTIVE CIRCUIT:

$$I = \frac{\mathbf{v_s}}{R} = \frac{V_m \sin \omega t}{R} = I_m \sin \omega t$$

$$I_m = \frac{V_m}{R}$$

$$I_{rms} = \frac{V_{rms}}{R}$$

$$= V_{rms}I_{rms}\cos\phi = \frac{V_{rms}^2}{R}$$

7. PURELY CAPACITIVE CIRCUIT:

$$I = = \frac{V_{m}}{\frac{1}{\omega}C} \cos \omega t$$

=
$$\frac{V_m}{X_C} \cos \omega t = I_m \cos \omega t$$
.

 $X_c = \frac{1}{\omega C}$ and is called capacitive reactance.

 I_c leads by v_c by $\pi/2$ Diagrammatically (phasor diagram) it is represented as

$$\downarrow$$
 I_{m} .

Since
$$\phi = 90^{\circ}$$
, $\langle P \rangle = V_{rms} I_{rms} \cos \phi = 0$