CIRCULAR MOTION

$$\Rightarrow \qquad \omega_{\text{av}} = \frac{\theta_2 - \theta_1}{t_2 - t_1} = \frac{\Delta \theta}{\Delta t}$$

2. Instantaneous angular velocity
$$\Rightarrow \omega = \frac{d\theta}{dt}$$

$$\Rightarrow \qquad \alpha_{av} = \frac{\omega_2 - \omega_1}{t_2 - t_1} = \frac{\Delta \omega}{\Delta t}$$

$$\Rightarrow$$
 $\alpha = \frac{d\omega}{dt} = \omega \frac{d\omega}{d\theta}$

- 5. Relation between speed and angular velocity $\Rightarrow v = r\omega$ and $\vec{v} = \vec{\omega} \times \vec{r}$
- 7. Tangential acceleration (rate of change of speed)

$$\Rightarrow a_{t} = \frac{dV}{dt} = r \frac{d\omega}{dt} = \omega \frac{dr}{dt}$$

8. Radial or normal or centripetal acceleration
$$\Rightarrow$$
 $a_r = \frac{v^2}{r} = \omega^2 r$

9. Total acceleration

$$\Rightarrow$$
 $\vec{a} = \vec{a}_t + \vec{a}_r \Rightarrow a = (a_t^2 + a_r^2)^{1/2}$

Where
$$\vec{a}_t = \vec{\alpha} \times \vec{r}$$
 and $\vec{a}_r = \vec{\omega} \times \vec{v}$

10. Angular acceleration

$$\Rightarrow \quad \vec{\alpha} = \frac{d\vec{\omega}}{dt} \text{ (Non-uniform circular motion)}$$

12. Radius of curvature R =
$$\frac{v^2}{a_{\perp}} = \frac{mv^2}{F_{\perp}}$$
If y is a function of x. i.e. y = f(x) \Rightarrow R = $\frac{\left[1 + \left(\frac{dy}{dx}\right)^2\right]^{3/2}}{\frac{d^2y}{dx^2}}$

$$R = \frac{\left[1 + \left(\frac{dy}{dx}\right)^2\right]^{3/2}}{\frac{d^2y}{dx^2}}$$

$$\Rightarrow$$
 N = mg cos θ + $\frac{mv^2}{r}$

14. Normal reaction on a convex bridge

$$\Rightarrow$$
 N = mg cos $\theta - \frac{mv^2}{r}$

 $v_{safe} \le \sqrt{\mu gr}$

16. Skidding of an object on a rotating platform
$$\Rightarrow \omega_{max} = \sqrt{\mu g/\mu}$$

17. Bending of cyclist
$$\Rightarrow \tan \theta = \frac{v^2}{rq}$$

18. Banking of road without friction
$$\Rightarrow$$
 tan $\theta = \frac{v^2}{rg}$

19. Banking of road with friction
$$\Rightarrow \frac{v^2}{rg} = \frac{\mu + \tan \theta}{1 - \mu \tan \theta}$$

20. Maximum also minimum safe speed on a banked frictional road

$$V_{\text{max}} = \left[\frac{\text{rg}(\mu + \tan \theta)}{(1 - \mu \tan \theta)} \right]^{1/2} \qquad V_{\text{min}} = \left[\frac{\text{rg}(\tan \theta - \mu)}{(1 + \mu \tan \theta)} \right]^{1/2}$$

- **21.** Centrifugal force (pseudo force) \Rightarrow f = $m\omega^2$ r, acts outwards when the particle itself is taken as a frame.
- 22. Effect of earths rotation on apparent weight \Rightarrow N = mg mR ω^2 cos 2 θ ; where θ \Rightarrow latitude at a place

23. Various quantities for a critical condition in a vertical loop at different positions

$$V_{min}\,=\sqrt{4gL}$$

$$V_{min} = \sqrt{4gL}$$

$$V_{min} = \sqrt{4gL}$$

(for completing the circle) (for completing the circle) (for completing the circle)

24. Conical pendulum:

T cos θ = mg
T sin θ =
$$mω^2$$
 r

Time period =
$$\sqrt[2\pi]{\frac{L\cos\theta}{g}}$$

25. Relations amoung angular variables:

$$\omega_0 \Rightarrow$$
 Initial ang. velocity

$$d\theta, \ \omega \ or \ \alpha$$
 (Perpendicular to plane of paper directed outwards for ACW rotation)

$$\omega = \omega_0 + \alpha t$$

$$\omega \Rightarrow$$
 Find angular velocity

$$\omega \Rightarrow$$
 Const. angular acceleration

$$\theta \Rightarrow$$
 Angular displacement

$$\theta = \omega_0 t + \frac{1}{2} \alpha t^2$$

$$\omega^2 = \omega_0^2 + 2\alpha \theta$$