FLUID MECHANICS & PROPERTIES OF MATTER

FLUIDS, SURFACE TENSION, VISCOSITY & ELASTICITY:

1.

Hydraulic press.
$$p = \frac{f}{a} = \frac{F}{A} \text{ or } F = \frac{A}{a} \times f$$
.
Hydrostatic Paradox $P_A = P_B = P_C$

$$P_A = P_B = P_C$$

(i) Liquid placed in elevator: When elevator accelerates upward with acceleration a₀ then pressure in the fluid, at depth 'h' may be given by,

$$p = \rho h [g + a_0]$$

and force of buoyancy, B = m (g + a_0) $\begin{bmatrix} \\ \\ \end{bmatrix}$

(ii) Free surface of liquid in horizontal acceleration:

$$\tan \theta = \frac{a_0}{g}$$

 $p_1 - p_2 = \rho \ell a_0$ where p_1 and p_2 are pressures at points 1 & 2.

Then
$$h_1 - h_2 = \frac{\ell a_0}{g}$$

(iii) Free surface of liquid in case of rotating cylinder.

$$h = \frac{v^2}{2g} = \frac{\omega^2 r^2}{2g}$$

Equation of Continuity

$$a_1v_1 = a_2v_2$$

In general av = constant.

Bernoulli's Theorem

i.e.
$$\frac{P}{\rho} + \frac{1}{2} v^2 + gh = constant$$
.

(vi) Torricelli's theorem – (speed of efflux)
$$v = \sqrt{\frac{2gh}{1 - \frac{A_2^2}{A_1^2}}}$$
, A_2 = area of hole A_1 = area of vessel.

ELASTICITY & VISCOSITY : stress =
$$\frac{\text{restoring force}}{\text{area of the body}} = \frac{F}{A}$$

Strain,
$$\in$$
 = $\frac{\text{change in configuration}}{\text{original configuration}}$

(i) Longitudinal strain =
$$\frac{\Delta L}{L}$$

(ii)
$$\in_{v}$$
 = volume strain = $\frac{\Delta V}{V}$

(iii) Shear Strain:
$$tan \phi or \phi = \frac{x}{\ell}$$

Young's modulus of elasticity
$$Y = \frac{F/A}{\Delta L/L} = \frac{FL}{A\Delta L}$$

Potential Energy per unit volume = $\frac{1}{2}$ (stress × strain) = $\frac{1}{2}$ (Y × strain²) Inter-Atomic Force-Constant $k = Yr_0$.

Newton's Law of viscosity,
$$F \propto A \frac{dv}{dx}$$
 or $F = -\eta A \frac{dv}{dx}$

Stoke's Law
$$F = 6 \pi \eta r v$$
. Terminal velocity $= \frac{2}{9} \frac{r^2(\rho - \sigma)g}{\eta}$

SURFACE TENSION

Surface tension(T) =
$$\frac{\text{Total force on either of the imaginary line (F)}}{\text{Length of the line (ℓ)}}$$
;

$$T = S = \frac{\Delta W}{A}$$

Thus, surface tension is numerically equal to surface energy or work done per unit increase surface area.

Inside a bubble:
$$(p - p_a) = \frac{4T}{r} = p_{excess}$$
;

Inside the drop:
$$(p - p_a) = \frac{2T}{r} = p_{excess}$$

Inside air bubble in a liquid :
$$(p - p_a) = \frac{2T}{r} = p_{excess}$$

Capillary Rise
$$h = \frac{2T\cos\theta}{r\rho g}$$