- (i) Longitudinal displacement of sound wave $\xi = A \sin(\omega t kx)$
- (ii) Pressure excess during travelling sound wave

$$P_{ex} = -B \frac{\partial \xi}{\partial x}$$
 (it is true for travelling
= (BAk) cos(ωt – kx)

wave as well as standing waves)

Amplitude of pressure excess = BAk

(iii) Speed of sound C =
$$\sqrt{\frac{E}{\rho}}$$

Where E = Ellastic modulus for the medium ρ = density of medium

$$C = \sqrt{\frac{Y}{\rho}}$$

where Y = young's modulus for the solid

- for liquid
$$C = \sqrt{\frac{B}{\rho}}$$

where B = Bulk modulus for the liquid

- for gases
$$C = \sqrt{\frac{B}{\rho}} = \sqrt{\frac{\gamma P}{\rho}} = \sqrt{\frac{\gamma RT}{M_0}}$$

where M_o is molecular wt. of the gas in (kg/mole)

Intensity of sound wave:

$$< I > = 2\pi^2 f^2 A^2 \rho v = \frac{P_m^2}{2\rho v}$$
 $< I > \infty P_m^2$

(iv) Loudness of sound :
$$L = 10 \log_{10} \left(\frac{I}{I_0}\right) dB$$

where $I_0 = 10^{-12}$ W/m² (This the minimum intensity human ears can listen)

Intensity at a distance r from a point source = $I = \frac{P}{4\pi r^2}$

if
$$P_1 = p_{m1} \sin (\omega t - kx_1 + \theta_1)$$

 $P_2 = p_{m2} \sin (\omega t - kx_2 + \theta_2)$
resultant excess pressure at point O is $p = P_1 + P_2$
 $p = p_0 \sin (\omega t - kx + \theta)$
 $p_0 = \sqrt{p_{m_1}^2 + p_{m_2}^2 + 2p_{m_1}p_{m_2}\cos\phi}$
where $\phi = [k (x_2 - x_1) + (\theta_1 - \theta_2)]$
and $I = I_1 + I_2 + 2\sqrt{I_1 I_2}$

(i) For constructive interference

 $\phi = 2n\pi$ and \Rightarrow $p_0 = p_{m1} + p_{m2}$ (constructive interference)

For destructive interfrence (ii) $\phi = (2n + 1) \pi$ and $\Rightarrow p_0 = |p_{m1} - p_{m2}|$ (destructive interference)

If ϕ is due to path difference only then $\phi = \frac{2\pi}{\lambda} \Delta x$.

Condition for constructive interference: $\Delta x = n\lambda$

Condition for destructive interference : $\Delta x = (2n + 1) \frac{\lambda}{2}$.

- $p_{m1} = p_{m2}$ and $\theta = \pi, 3\pi, ...$ (a)
- resultant p = 0 1.6. 116 c. $p_{m1} = p_{m2}$ and $\phi = 0$, 2π , 4π , ... (b) $p_0 = 2p_m \& I_0 = 4I_1$ $p_0 = 2p_{m1}$

Close organ pipe:

$$f = \frac{v}{4\ell}, \frac{3v}{4\ell}, \frac{5v}{4\ell}, \dots \frac{(2n+1)v}{4\ell} \qquad \qquad n = overtone$$

Open organ pipe:

$$f = \frac{v}{2\ell}, \frac{2v}{2\ell}, \frac{3v}{2\ell}, \dots \frac{nV}{2\ell}$$

Beats: Beatsfrequency = $|f_1 - f_2|$.

Doppler's Effect

 $f' = f\left(\frac{v - v_0}{v - v_0}\right)$ The observed frequency,

Apparent wavelength $\lambda' = \lambda \left(\frac{v - v_s}{v} \right)$ and