## STRING WAVES

## **GENERAL EQUATION OF WAVE MOTION:**

$$\frac{\partial^2 y}{\partial t^2} = v^2 \frac{\partial^2 y}{\partial x^2}$$

$$y(x,t) = f(t \pm \frac{x}{v})$$

where, y (x, t) should be finite everywhere.

$$\Rightarrow$$
  $f\left(t+\frac{x}{v}\right)$  represents wave travelling in – ve x-axis.

$$\Rightarrow f\left(t - \frac{x}{v}\right) \text{ represents wave travelling in + ve x-axis.}$$

$$y = A \sin(ωt \pm kx + φ)$$

# TERMS RELATED TO WAVE MOTION (FOR 1-D PROGRESSIVE SINE WAVE)

(e) Wave number (or propagation constant) (k):

$$k = 2\pi/\lambda = \frac{\omega}{v} \text{ (rad m}^{-1}\text{)}$$

(f) Phase of wave: The argument of harmonic function ( $\omega t \pm kx + \phi$ ) is called phase of the wave.

Phase difference ( $\Delta \phi$ ): difference in phases of two particles at any time t.

$$\Delta \phi = \frac{2\pi}{\lambda} \Delta x$$
 Also.  $\Delta \phi = \frac{2\pi}{T} \cdot \Delta t$ 

SPEED OF TRANSVERSE WAVE ALONG A STRING/WIRE.

$$v = \sqrt{\frac{\text{T}}{\mu}} \quad \text{where} \quad \begin{aligned} T &= Tension \\ \mu &= mass \ per \ unit \ length \end{aligned}$$

#### POWER TRANSMITTED ALONG THE STRING BY A SINE WAVE

Average Power  $\langle P \rangle = 2\pi^2 f^2 A^2 \mu v$ 

Intensity 
$$I = \frac{\langle P \rangle}{s} = 2\pi^2 f^2 A^2 \rho v$$

### REFLECTION AND REFRACTION OF WAVES

$$y_i = A_i \sin(\omega t - k_1 x)$$

$$y_t = A_t \sin(\omega t - k_2 x)$$
  
 $y_r = -A_r \sin(\omega t + k_1 x)$  if incident from rarer to denser medium  $(v_2 < v_1)$ 

$$\begin{vmatrix} y_t = A_t \sin(\omega t - k_2 x) \\ y_r = A_r \sin(\omega t + k_1 x) \end{vmatrix}$$
 if incident from denser to rarer medium.  $(v_2 > v_1)$ 

(d) Amplitude of reflected & transmitted waves.

$$A_r = \frac{|k_1 - k_2|}{k_1 + k_2} A_i & A_t = \frac{2k_1}{k_1 + k_2} A_i$$

#### STANDING/STATIONARY WAVES:-

(b) 
$$y_1 = A \sin (\omega t - kx + \theta_1)$$
  
 $y_2 = A \sin (\omega t + kx + \theta_2)$ 

$$y_1 + y_2 = \left[ 2 A \cos \left( kx + \frac{\theta_2 - \theta_1}{2} \right) \right] \sin \left( \omega t + \frac{\theta_1 + \theta_2}{2} \right)$$

The quantity 2A cos  $\left(kx + \frac{\theta_2 - \theta_1}{2}\right)$  represents resultant amplitude at

x. At some position resultant amplitude is zero these are called **nodes**. At some positions resultant amplitude is 2A, these are called **antinodes**. **odes**.

- (c) Distance between successive nodes or antinodes =  $\frac{\lambda}{2}$ .
- (d) Distance between successive nodes and antinodes =  $\lambda/4$ .
- (e) All the particles in same segment (portion between two successive nodes) vibrate in same phase.
- (f) The particles in two consecutive segments vibrate in opposite phase.
- (g) Since nodes are permanently at rest so energy can not be transmitted across these.

# **VIBRATIONS OF STRINGS (STANDING WAVE)**

# (a) Fixed at both ends:

1. Fixed ends will be nodes. So waves for which

$$L = \frac{\lambda}{2}$$

$$L = \frac{3\lambda}{2}$$

$$\text{are possible giving}$$

$$L = \frac{3\lambda}{2}$$

$$L = \frac{n\lambda}{2}$$
 or  $\lambda = \frac{2L}{n}$  where  $n = 1, 2, 3, ....$  as  $v = \sqrt{\frac{T}{\mu}}$   $f_n = \frac{n}{2L}\sqrt{\frac{T}{\mu}}$ ,  $n = no.$  of loops

#### (b) ourning tree at one end .

1. for fundamental mode L =  $\frac{\lambda}{4}$  = or  $\lambda$  = 4L



First overtone L = 
$$\frac{3\lambda}{4}$$
 Hence  $\lambda = \frac{4L}{3}$ 

$$\Rightarrow$$

so 
$$f_1 = \frac{3}{4L} \sqrt{\frac{T}{\mu}}$$
 (First overtone)

Second overtone 
$$f_2 = \frac{5}{4L} \sqrt{\frac{T}{\mu}}$$

so 
$$f_n = \frac{\left(n + \frac{1}{2}\right)}{2L} \sqrt{\frac{T}{\mu}} = \frac{(2n+1)}{4L} \sqrt{\frac{T}{\mu}}$$