Chapter 1: MEASUREMENT

1. The SI standard of time is \qquad
A. the daily rotation of the earth
B. the frequency of light emitted by Kr^{86}
C. the yearly revolution of the earth about the sun
D. a precision pendulum clock
E. none of these

Ans: E
2. A nanosecond is:
A. $10^{9} \mathrm{~s}$
B. $10^{-9} \mathrm{~s}$
C. $10^{-10} \mathrm{~s}$
D. $10^{-10} \mathrm{~s}$
E. 10^{-12}

Ans: B
3. The SI standard of length is based on:
A. the distance from the north pole to the equator along a meridian passing through Paris
B. wavelength of light emitted by Hg^{198}
C. wavelength of light emitted by Kr^{86}
D. a precision meter stick in Paris
E. the speed of light

Ans: E
4. In 1866 , the U. S. Congress defined the U. S. yard as exactly $3600 / 3937$ international meter. This was done primarily because:
A. length can be measured more accurately in meters than in yards
B. the meter is more stable than the yard
C. this definition relates the common U. S. length units to a more widely used system
D. there are more wavelengths in a yard than in a meter
E. the members of this Congress were exceptionally intelligent

Ans: C
5. Which of the following is closest to a yard in length?
A. 0.01 m
B. 0.1 m
C. 1 m
D. 100 m
E. 1000 m

Ans: C
6. There is no SI base unit for area because:
A. an area has no thicknt
B. we live in a three (not a two) dimensional world
C. it is impossible to express square feet in terms of meters
D. area can be expressed in terms of square meters
E. area is not an important physical quantity

Ans: D
7. The SI base unit for mass is:
A. gram
B. pound
C. kilogram
D. ounce
E. kilopound

Ans: C
8. A gram is:
A. $10^{-6} \mathrm{~kg}$
B. $10^{-3} \mathrm{~kg}$
C. 1 kg
D. $10^{3} \mathrm{~kg}$
E. $10^{6} \mathrm{~kg}$

Ans: B
9. Which of the following weighs about a pound?
A. 0.05 kg
B. 0.5 kg
C. 5 kg
D. 50 kg
E. 500 kg

Ans: D
10. $\left(5.0 \times 10^{4}\right) \times\left(3.0 \times 10^{6}\right)=$
A. 1.5×10^{9}
B. 1.5×10^{10}
C. 1.5×10^{11}
D. 1.5×10^{12}
E. 1.5×10^{13}

Ans: C
11. $\left(5.0 \times 10^{4}\right) \times\left(3.0 \times 10^{-6}\right)=$
A. 1.5×10^{-3}
B. 1.5×10^{-1}
C. 1.5×10^{1}
D. 1.5×10^{3}
E. 1.5×10^{5}

Ans: B
12. $5.0 \times 10^{5}+3.0 \times 10^{6}=$
A. 8.0×10^{5}
B. 8.0×10^{6}
C. 5.3×10^{5}
D. 3.5×10^{5}
E. 3.5×10^{6}

Ans: E
13. $\left(7.0 \times 10^{6}\right) /\left(2.0 \times 10^{-6}\right)=$
A. 3.5×10^{-12}
B. 3.5×10^{-6}
C. 3.5
D. 3.5×10^{6}
E. 3.5×10^{12}

Ans: E
14. The number of significant figures in 0.00150 is:
A. 2
B. 3
C. 4
D. 5
E. 6

Ans: B
15. The number of significant figures in 15.0 is:
A. 1
B. 2
C. 3
D. 4
E. 5

Ans: C
16. $3.2 \times 2.7=$
A. 9
B. 8
C. 8.6
D. 8.64
E. 8.640

Ans: C
17. $1.513+27.3=$
A. 29
B. 28.8
C. 28.9
D. 28.81
E. 28.813
()Ans: B
18. 1 mi is equivalent to 1609 m so 55 mph is:
A. $15 \mathrm{~m} / \mathrm{s}$
B. $25 \mathrm{~m} / \mathrm{s}$
C. $66 \mathrm{~m} / \mathrm{s}$
D. $88 \mathrm{~m} / \mathrm{s}$
E. $1500 \mathrm{~m} / \mathrm{s}$

Ans: B
19. A sphere with a radius of 1.7 cm has a volume of:
A. $2.1 \times 10^{-5} \mathrm{~m}^{3}$
B. $9.1 \times 10^{-4} \mathrm{~m}^{3}$
C. $3.6 \times 10^{-3} \mathrm{~m}^{3}$
D. $0.11 \mathrm{~m}^{3}$
E. $21 \mathrm{~m}^{3}$

Ans: A
20. A sphere with a radius of 1.7 cm has a surface area of:
A. $2.1 \times 10^{-5} \mathrm{~m}^{2}$
B. $9.1 \times 10^{-4} \mathrm{~m}^{2}$
C. $3.6 \times 10^{-3} \mathrm{~m}^{2}$
D. $0.11 \mathrm{~m}^{2}$
E. $36 \mathrm{~m}^{2}$

Ans: C
21. A right circular cylinder with a radius of 2.3 cm and a height of 1.4 m has a volume of:
A. $0.20 \mathrm{~m}^{3}$
B. $0.14 \mathrm{~m}^{3}$
C. $9.3 \times 10^{-3} \mathrm{~m}^{3}$
D. $2.3 \times 10^{-3} \mathrm{~m}^{3}$
E. $7.4 \times 10^{-4} \mathrm{~m}^{3}$

Ans: D
22. A right circular cylinder with a radius of 2.3 cm and a height of 1.4 cm has a total surface area of:
A. $1.7 \times 10^{-3} \mathrm{~m}^{2}$
B. $3.2 \times 10^{-3} \mathrm{~m}^{2}$
C. $2.0 \times 10^{-3} \mathrm{~m}^{3}$
D. $5.3 \times 10^{-3} \mathrm{~m}^{2}$
E. $7.4 \times 10^{-3} \mathrm{~m}^{2}$

Ans: D
23. A cubic box with an edge of exactlv 1 cm has a volume of:
A. $10^{-9} \mathrm{~m}^{3}$
B. $10^{-6} \mathrm{~m}^{3}$
C. $10^{-3} \mathrm{~m}^{3}$
D. $10^{3} \mathrm{~m}^{3}$
E. $10^{6} \mathrm{~m}^{3}$

Ans: B
24. A square with an edge of exactly 1 cm has an area of:
A. $10^{-6} \mathrm{~m}^{2}$
B. $10^{-4} \mathrm{~m}^{2}$
C. $10^{2} \mathrm{~m}^{2}$
D. $10^{4} \mathrm{~m}^{2}$
E. $10^{6} \mathrm{~m}^{2}$

Ans: B
25. 1 m is equivalent to 3.281 ft . A cube with an edge of 1.5 ft has a volume of:
A. $1.2 \times 10^{2} \mathrm{~m}^{3}$
B. $9.6 \times 10^{-2} \mathrm{~m}^{3}$
C. $10.5 \mathrm{~m}^{3}$
D. $9.5 \times 10^{-2} \mathrm{~m}^{3}$
E. $0.21 \mathrm{~m}^{3}$

Ans: B
26. During a short interval of time the speed v in m / s of an automobile is given by $v=a t^{2}+b t^{3}$, where the time t is in seconds. The units of a and b are respectively:
A. $\mathrm{m} \cdot \mathrm{s}^{2} ; \mathrm{m} \cdot \mathrm{s}^{4}$
B. $\mathrm{s}^{3} / \mathrm{m} ; \mathrm{s}^{4} / \mathrm{m}$
C. $\mathrm{m} / \mathrm{s}^{2} ; \mathrm{m} / \mathrm{s}^{3}$
D. $\mathrm{m} / \mathrm{s}^{3} ; \mathrm{m} / \mathrm{s}^{4}$
E. $\mathrm{m} / \mathrm{s}^{4} ; \mathrm{m} / \mathrm{s}^{5}$

Ans: D
27. Suppose $A=B C$, where A has the dimension L / M and C has the dimension L / T. Then B has the dimension:
A. T / M
B. $\mathrm{L}^{2} / \mathrm{TM}$
C. $\mathrm{TM} / \mathrm{L}^{2}$
D. $L^{2} \mathrm{~T} / \mathrm{M}$
E. $M / L^{2} T$

Ans: A
28. Suppose $A=B^{n} C^{m}$, where A has dimensions LT. B has dimensions $\mathrm{L}^{2} \mathrm{~T}^{-1}$. and C has dimensions LT^{2}. Then the
A. $2 / 3 ; 1 / 3$
B. $2 ; 3$
C. $4 / 5 ;-1 / 5$
D. $1 / 5 ; 3 / 5$
E. $1 / 2 ; 1 / 2$

Ans: D

