10. Dependence of reaction rate on temperature.

A general approximate rule or the effect of temperature on reaction rates is that the rate of a reaction becomes almost double for every $10^{\,\circ}\,C$ rise in temperature. This is also called temperature coefficient.

Temperature coefficient. Temperature coefficient of a reaction is defined as the ratio of rate constants at two temperatures differing by (generally $25^{\circ}C$ and $35^{\circ}C$) 10.

Temperatur e coefficient =
$$\frac{k \text{ at } (t + 10^{\circ} C)}{k \text{ at } t^{\circ} C} = \frac{k_{35^{\circ} C}}{k_{25^{\circ} C}}$$
 Or Temperatur e coefficient = $\frac{k_{t+10}}{k_{t}}$

The temperature coefficient for most of the reactions lies between 2 and 3 *i.e.* the rate of reaction increase by a factor of 2 to 3, for every 10° C rise in temperature.