Arrhenius equation and Calculation of activation energy.

Arrhenius proposed a quantitative relationship between rate constant and temperature as, $k = A e^{-E_a/RT}$ (i)

The equation is called *Arrhenius equation* in which constant A is known as *frequency factor*. This factor is related to number of binary molecular collision per second per liter. E_a Is the activation energy. T is the absolute temperature and R is the gas constant. Both A and E_a are collectively known as *Arrhenius parameters*. Taking logarithm equation (i) may be written as,

$$\log k = \log A - \frac{E_a}{2.303 \ RT} \qquad \dots \dots (ii)$$

The value of activation energy (E_a) increases, the value of k decreases and therefore, the reaction rate decreases. When log k plotted against $\frac{1}{T}$, we get a straight line. The intercept of this line is equal to log A and slope equal to $\frac{-E_a}{2.303 R}$. Therefore $E_a = -2.303 R \times \text{slope}$.

Rate constants for the reaction at two different temperatures T_1 and T_2 ,

$$\log \frac{k_2}{k_1} = \frac{E_a}{2.303 R} \left[\frac{1}{T_1} - \frac{1}{T_2} \right] \qquad \dots \dots (iii)$$

Where k_1 and k_2 are rate constant at temperatures T_1 and T_2 respectively ($T_2 > T_1$).

Note: Generally rate of reaction increases with increase in temperature but remember for the reaction $2NO + O_2 \rightarrow 2NO_2$; the rate decreases slightly with increase in temperature because it has small negative temperature coefficient.

When $E_a = 0$, the rate of reaction becomes independent of temperature ($E_a = activation energy$)