
Some Commercial cells

One of the main use of galvanic cells is the generation of portable electrical energy. These cells are also popularly known as **batteries**. The term battery is generally used for two or more Galvanic cells connected in series. Thus, a **battery** is an arrangement of electrochemical cells used as an energy source. The basis of an electrochemical cell is an oxidation – reduction reaction. However, for practical purposes there are some limitations to the use of redox reactions. A useful battery should also fulfil the following requirements;

- It should be light and compact so that it can be easily transported.
- It should have reasonably long life both when it is being used and when it is not used.
- The voltage of the battery should not vary appreciably during its use.

Types of commercial cells: There are mainly two types of commercial cells,

(1) Primary cells: In these cells, the electrode reactions cannot be reversed by an external electric energy source. In these cells, reactions occur only once and after use they become dead. Therefore, they are **not chargeable.** Some common example are, dry cell, mercury cell, Daniell cell and alkaline dry cell.

Note: In a dry cell $ZnCl_2$ combines with NH_3 produced to form the complex $[Zn(NH_3)_2 Cl_2]$, otherwise the pressure developed due to NH_3 would crack the seal of the cell.

Mercury cell give a constant voltage throughout its life because the electrolyte *KOH* is not consumed in the reaction.

(2) **Secondary cells:** In the secondary cells, the reactions can be reversed by an external electrical energy source. Therefore, these cells can be **recharged** by passing electric current and used again and again. These are also celled **storage cells.** Examples of secondary cells are, lead storage battery and nickel – cadmium storage cell.

In charged	Lead storage cell	Alkali cell
	Glass vessel PbO ₂ Pb dil. H ₂ SO ₄	Ni(OH) ₂ Fe(OH) ₂ Perforated steel grid KOH 20% + Li(OH) 1%
Positive electrode	Perforated lead plates coated with PbO ₂	Perforated steel plate coated with Ni(OH) ₄
Negative electrode	Perforated lead plates coated with pure lead	Perforated steel plate coated with Fe
Electrolyte	dil. H ₂ SO ₄	20% solution of KOH + 1% LiOH
During charging	Chemical reactionAt cathode : $PbSO_4 + 2H^+ + 2e^- \rightarrow Pb + H_2SO_4$ At anode : $PbSO_4 + SO_4^{} + 2H_2O - 2e^- \rightarrow PbO_2 + 2H_2SO_4$ Specific gravity of H_2SO_4 increases and when specific gravity becomes 1.25 the cell is fully charged.	Chemical reaction At cathode : Ni $(OH)_2 + 2OH^+ - 2e^- \rightarrow$ Ni $(OH)_4$ At anode : Fe $(OH)_2 + 2K^+ + 2e^- \rightarrow$ Fe + 2KOH Emf of cell : When cell is fully charged then E = 1.36 volt

	Emf of cell : When cell is fully charged then E = 2.2 volt	
During discharging	Chemical reactionAt cathode : $Pb + SO_4^{} - 2e^- \rightarrow PbSO_4$ At anode : $PbO_2 + 2H^+ - 2e^- + H_2SO_4 \rightarrow$ $PbSO_4 +$ $2H_2O$ Specific gravity of H_2SO_4 decreases andwhen specific gravity falls below 1.18 the cellrequires recharging.Emf of cell: When emf of cell falls below 1.9volt the cell requires recharging.	
Efficiency	80%	60%