Mechanism of organic reactions.

When a chemical reaction takes place between two or more chemical species, new products are formed. This change is represented by a chemical equation. In a chemical equation, reactants are written on the left hand side while the products are written on the right hand side. The two are separated by an arrow (\rightarrow). The reactants normally consists of two species,

(1) **Substrate:**The species, which is attacked by some other chemical species, is called a substrate.

(2)**Reagent:** The species, which attacks the substrate in order to get the major product, is called a reagent.

Thus, Substrate + Reagent \rightarrow Products.

Normally, a substance and a chemical reagent form a highly energetic species, called **activated complex**, before it changes into the product. In certain cases, a relatively energetically more stable species than the activated complex may also be formed. It is called **reaction intermediate**. Thus, a chemical reaction, in general, may follow either of the following two paths,

Path I: Substrate + Reagent \rightarrow Activated complex \rightarrow Products **Path II**: Substrate + Reagent \rightarrow Activated complex \rightarrow Intermediate \rightarrow Products.

The detailed step by step description of a chemical reaction is called mechanism of a reaction which is only a hypothesis. If the reaction mechanism involves the breaking and making of bonds simultaneously without the formation of any intermediate, it is called **concerted mechanism**. On the other hand, if the reaction mechanism involve the formation of intermediates before the formation of products, it is called **non-concerted mechanism**.

Enthalpy curves for concerted and Non-concerted mechanisms

To understand clearly the mechanism of various organic reactions, it is essential to have knowledge about the following concepts;

- Electronic displacements in covalent bonds,
- Cleavage (fission or breaking) of covalent bonds,
- Nature of attacking reagents.