Classification, Structure, Nomenclature and Isomerism.

(1) Classification

(2) Structure: Carbonyl carbon atom is joined to three atoms by sigma bonds. Since these bonds

1209

120

120

 σ -bond

 π -bond

utilise sp^2 -orbitals, they lie in the same plane and are 120° apart. The carbonoxygen double bond is different than carbon-carbon double bond. Since, Oxygen is more electronegative, the electrons of the bond are attracted towards oxygen. Consequently, oxygen attains a partial negative charge and carbon a partial positive charge making the bond polar. The high values of dipole moment,

$$\overset{\delta_+}{C} = \overset{\delta_-}{C}$$

(2.3 - 2.8D) cannot be explained only on the basis of inductive effect and thus, it is proposed that carbonyl group is a resonance hybrid of the following two structures.

 $C = O \longleftrightarrow C - \overline{O}$

(3) Nomenclature

(i) Aldehyde: There are two systems of naming aldehydes,

(a) Common system: In the common system, aldehydes are named according to the name of the corresponding acid which they form on oxidation. The suffix –**ic acid** the name of the acid is replaced by aldehyde. For example, CH_3CHO derived from acetic acid (CH_3COOH) is named

as acetaldehyde.

$$CH_{3}COOH \xrightarrow{-ic \text{ acid}} CH_{3} \xrightarrow{-ic \text{ acid}} CH_{3} \xrightarrow{-ic} = O$$
 Acetic acid + aldehyde = acetaldehyde

Branching in the aldehyde chain, if any, is indicated by the Greek letters α , β , γ , δ etc. The carbon attached to the -CHO group is α as:

For example, -C - C - C - C - CHOCH₃CH₂CHCHO CH_3 α -Methyl but yraldehyde

(b) IUPAC system: In the **IUPAC system**, the aldehydes are known as **alkanals**. The name of aldehyde is derived by replacing the terminal -e of the name of corresponding alkane by al. For example, HCHO Methanal Alkane - e + al = Alkanal $CH_{3}CHO$ C_2H_5CHO

Propanal

(ii) Ketone: There are two systems of naming ketone,

Ethanal

(a) Common system: In the common system, ketones are named by using the names of alkyl group present in the molecule. For example,

 $CH_3CH_2COCH_2CH_3$ Diethyl ketone $CH_{3}COCH_{3}$ $CH_{3}COCH_{2}CH_{3}$ Dimethyl ketone Ethyl methyl ketone $CH_{3}COCH_{2}CH_{2}CH_{3}$ $CH_{3}COCH(CH_{3})_{2}$ $C_6H_5CH_2COCH_3$ Methyl isopropyl ketone Benzyl methyl ketone Methyl *n*-propylketo ne

Some of the ketones are known by their old popular names as well. For example, dimethyl ketone, CH₃COCH₃ is still popularly known as acetone.

(b) IUPAC system: In this system, longest chain containing the ketonic group is taken as the parent chain. In naming the ketone corresponding to the chain, the following procedure is adopted.

Root word + ane -e + one i.e., Alkanone

The positions of the ketonic group and the substituents are indicated by the locants.

```
CH_3COCH_3
                            Propanone
CH_{3}COCH_{2}CH_{3}
                            Butanone-2
CH_{3}CH_{2}COCH_{2}CH_{3}
                            Pantanone-3
CH_3 - CHCOCH_2CH_2CH_3 2-Methylhexanone-3
     CH_3
```

(4) **Isomerism:** Aldehydes show **chain** and **functional** isomerism.

Chain isomers:
$$CH_{3}CH_{2}CH_{2}CHO_{2-Methylprop anal (iso-Butanal)}$$

(i) Functional isomers: $CH_{3}CH_{2}CHO$; $CH_{3}COCH_{3}$; $CH_{2} = CHCH_{2}OH$; $CH_{3}CH - CH_{2}$;
Propanal Acetone Allylalcohol
 α,β -Propylene oxide

 $CH_2 = CH.O.CH_3$ Methyl vinyl ether

Ketones show **chain**, **functional and metamerism**. Examples of functional isomerism is given above in aldehydes.

(ii) Chain isomers:
$$CH_3CH_2CH_2 - \overset{0}{C} - CH_3$$
; $(CH_3)_2CH - \overset{0}{C} - CH_3$
Methylprop yl ketone O
(iii) Metamers: $CH_3CH_2CH_2 - \overset{0}{C} - CH_3$; $CH_3CH_2 - \overset{0}{C} - CH_2CH_3$
Methylprop yl ketone $CH_3CH_2 - \overset{0}{C} - CH_2CH_3$; $CH_3CH_2 - \overset{0}{C} - CH_2CH_3$