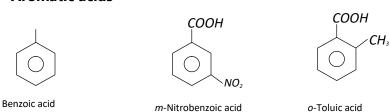
Classification, Structure, Nomenclature & Isomerism

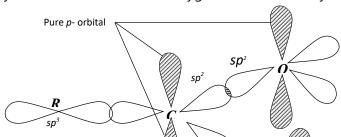
(1) Classification

(i) Carboxylic acids are classified as monocarboxylic acids, dicarboxylic acids, tricarboxylic acids etc. depending on the number of – COOH groups present in the molecule.


 CH_2COOH CH_2COOH CHCOOH CH_2COOH CH_2COOH

monocarboxylic acid Dicarboxylic acid Tricarboxylic acid

- (ii) Monocarboxylic acids of aliphatic series are commonly known as fatty acids such as palmitic acid ($C_{15}\,H_{31}\,COOH$) and stearic acid ($C_{17}\,H_{35}\,COOH$).
- (iii) The general formula for monocarboxylic acids is $C_n H_{2n+1} COOH$ or $C_n H_{2n} O_2$. Where n = number of carbon atoms.
- (iv) The carboxylic acids may be aliphatic or aromatic depending upon whether COOH group is attached to aliphatic alkyl chain or aryl group respectively.


Aliphatic acids

Aromatic acids

(2) Structure:

- (i) The name carboxyl is derived from carbonyl \bigcirc and hydroxyl (– OH) because both carbonyl and hydroxyl groups are directly linked to each other.
- (ii) The carboxylic carbon atom and two oxygen atom in carboxylic acid are sp² hybridized.

1
$$R - C - OH R - C$$

$$H 1.36 Å - Å | R$$

$$R - C = O$$

$$R - C = R$$

Delocalized π -electron cloud

- (iii) The shorter bond (c o) and longer bond (c = o) of carboxylic acid than alcohol and ketone is due to delocalization of π electrons.
- (3) **Nomenclature:** The monocarboxylic acids are named according to following systems.
- (i) **Common or trivial names:** The names of lower members are derived from the Latin or Greek word that indicates the source of the particular acid. The common names have ending –ic acid.

Formula	Source	Common name
НСООН	Red ant (Latin, ant = Formica)	Formic acid
CH ₃ COOH	Vinegar (Latin; vinegar = Acetum)	Acetic acid
C_2H_5COOH	Proton-pion (Greek; Proton = first, Pion = Fat)	Propionic acid
C_3H_7COOH	Butter (Latin ; Butter = Butyrum)	Butyric acid
C_4H_9COOH	Root of valerian plant	Valeric acid

(ii) **Derived system:**Monocarboxylic acids may be named as alkyl derivatives of acetic acid.

(iii) **IUPAC system :** Acids are named as alkanoic acids (Alkane – e + oic acid). The name is derived by replacing 'e' of the corresponding alkane by –oic acid.

HCOOH Methanoic acid (Methane – e + oic acid)

CH 3 COOH Ethanoic acid (Ethane – e + oic acid)

In case of substituted acids,

$$\overset{5}{C}H_{3} - \overset{4}{C}H - \overset{3}{C}H - \overset{2}{C}H - \overset{1}{C}H_{2} \overset{1}{C}OOH \, ; \qquad \overset{4}{C}H_{3} - \overset{3}{C}H - \overset{2}{C}H - \overset{1}{C}OOH \, ; \\ \overset{1}{C}H_{3} \overset{1}{C}H_{3} & \overset{1}{C}H_{3} & \overset{1}{C}H_{3} \\ \overset{3}{3}\text{-Bromo -2-methyl but ano ic acid}$$

(4) Isomerism

(i) Chain isomerism:
$$CH_3 - CH_2 - CH_2 - CH_2 - COOH$$
 ; $CH_3 - CH_2 - CH_2 - COOH$; $CH_3 - CH_2 - CH_2 - COOH$ 2-methyl but anoic acid

(ii) Position isomerism:
$$CH_3$$
 – CH – CH_2 – $COOH$; CH_3 – CH_2 – CH – $COOH$ – CH_3 3-methyl butanoic acid 2-methyl but anoic acid

(iii) Functional isomerism:
$$CH_3 - CH_2 - COOH$$
 ; $CH_3 COOCH_3$; $HCOOC_2 H_5$ Ethyl formate

(iv) Optical isomerism

$$C_2H_5 \\ CH_3 - \begin{matrix} & & & & & & \\ & -C - C_3H_7 & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & &$$