Mercury and its Compounds.

Ores: Cinnabar (*HgS*)

Extraction:Roasting: The concentrated ore roasted at 770 K to 780 K in the pressure of air.

$$2HgS + 3SO_2 \rightarrow 2HgO + 2SO_2$$
; $2HgO \rightarrow 2Hg + O_2$

Refining: By filtering impure Hg through thick canvass or chamois leather. It is then dropped into 5% HNO_3 .

Compounds of Mercury

Mercuric chloride $HgCl_2$ (Corrosive sublimate): It is a colorless solid, sparingly soluble in water. It forms red ppt. of HgI_2 with $KI: HgCl_2 + 2KI \rightarrow HgI_2 + 2KCl$. With NH_4OH it gives white ppt. of $Hg(NH_2)Cl$. $HgCl_2 + 2NH_4OH \rightarrow Hg(NH_2)Cl + NH_4Cl + 2H_2O$. white ppt.

Mercurous chloride Hg_2Cl_2 (Calomel) : It is a white solid insoluble in water. With NH_4OH it forms a black mixture composed of black metallic mercury and white mercuric amino chloride, $Hg(NH_2)Cl$.

$$Hg_2Cl_2 + 2NH_4OH \rightarrow \underbrace{Hg + Hg(NH_2)Cl}_{Black \; mixture} + NH_4Cl + 2H_2O$$

It is used as purgative in medicine and it sublimes on heating.

Mercuric iodide HgI_2 : It is a yellow solid below 400K but changes to red solid above 400K.

$$HgI_2$$
 HgI_2 $Yellow$ $400 K$

It dissolves in excess of KI forming K_2HgI_4 ; $HgI_2 + 2KI \rightarrow K_2HgI_4$

Alkaline solution of K_2HgI_4 is called Nessler's reagent.