Specific and Molar heat capacity of Gases.

(1) Specific heat (or specific heat capacity) of a substance is the quantity of heat (in calories, joules, kcal, or kilo joules) required to raise the temperature of 1 g of that substance through $1^{\circ} C$. It can be measured at constant pressure $\left(c_{p}\right)$ and at constant volume $\left(c_{v}\right)$.
(2) Molar heat capacity of a substance is the quantity of heat required to raise the temperature of 1 mole of the substance by $1^{\circ} \mathrm{C}$.
$\therefore \quad$ Molar heat capacity $=$ Specific heat capacity \times Molecular weight, i.e.,

$$
C_{v}=c_{v} \times M \text { and } C_{p}=c_{p} \times M .
$$

(3) Since gases upon heating show considerable tendency towards expansion if heated under constant pressure conditions, an additional energy has to be supplied for raising its temperature by $1^{\circ} \mathrm{C}$ relative to that required under constant volume conditions, i.e.,

$$
C_{p}>C_{v} \text { or } C_{p}=C_{v}+\text { Work done on expanson, } P \Delta V(=R)
$$

Where, $C_{p}=$ molar heat capacity at constant pressure; $C_{v}=$ molar heat capacity at constant volume.

Note: C_{p} and C_{v} for solids and liquids are practically equal. However, they differ considerable in case of gas because appreciable change in volume takes place with temperature.
(4) Some useful relations of $\mathbf{C}_{\mathbf{p}}$ and $\mathbf{C}_{\mathbf{v}}$
(i) $C_{p}-C_{v}=R=2$ calories $=8.314 \mathrm{~J}$
(ii) $\quad C_{v}=\frac{3}{2} R$ (For monoatomic gas) and $C_{v}=\frac{3}{2}+x$ (for di and polyatomic gas), where x varies from gas to gas.
(iii) $\frac{C_{p}}{C_{v}}=\gamma$ (Ratio of molar capacities)
(iv) For monoatomic gas $C_{v}=3$ calories whereas, $C_{p}=C_{v}+R=5$ calories
(v) For monoatomic gas, $(\gamma)=\frac{C_{p}}{C_{v}}=\frac{\frac{5}{2} R}{\frac{3}{2} R}=1.66$.
(vi) For diatomic gas $(\gamma)=\frac{C_{p}}{C_{v}}=\frac{\frac{7}{2} R}{\frac{5}{2} R}=1.40$
(vii) For triatomic gas $(\gamma)=\frac{C_{p}}{C_{v}}=\frac{8 R}{6 R}=1.33$

Values of Molar heat capacities of some gases,

$\mathbf{G a s}$	$\mathbf{C}_{\mathbf{p}}$	$\mathbf{C}_{\mathbf{v}}$	$\mathbf{C}_{\mathbf{p}}-\mathbf{C}_{\mathbf{v}}$	$\mathbf{C}_{\mathbf{p}} / \mathbf{C}_{\mathbf{v}}=\gamma$	Atomicity
He	5	3.01	1.99	1.661	1
$\mathrm{~N}_{2}$	6.95	4.96	1.99	1.4	2
O_{2}	6.82	4.83	1.99	1.4	2
CO_{2}	8.75	6.71	2.04	1.30	3
$\mathrm{H}_{2} \mathrm{~S}$	8.62	6.53	2.09	1.32	3

