Charle's law.

(1) French chemist, Jacques Charles first studied variation of volume with temperature, in 1787.
(2) It states that, "The volume of a given mass of a gas is directly proportional to the absolute temperature ($={ }^{\circ} C+273$) at constant pressure".

Thus, $V \propto T$ at constant pressure and mass
or $V=K T=K\left(t\left({ }^{\circ} C\right)+273.15\right)$, (where k is constant),

$$
\frac{V}{T}=K
$$

For two or more gases at constant pressure and mass

$$
\frac{V_{1}}{T_{1}}=\frac{V_{2}}{T_{2}}=\ldots \ldots .
$$

Charle's law can also be given as, $\left(\frac{d V}{d T}\right)_{P}=K$.
(3) If $t=0^{\circ} C$, then $V=V_{0}$

Hence, $\quad V_{0}=K \times 273.15$

$$
\begin{aligned}
& \therefore \quad K=\frac{V_{0}}{273.15} \\
& V=\frac{V_{0}}{273.15}[t+273.15]=V_{0}\left[1+\frac{t}{273.15}\right]=V_{0}\left[1+\alpha_{v} t\right]
\end{aligned}
$$

Where α_{v} is the volume coefficient, $\alpha_{v}=\frac{V-V_{0}}{t V_{0}}=\frac{1}{273.15}=3.661 \times 10^{-3}{ }^{\circ} \mathrm{C}^{-1}$
Thus, for every 1° change in temperature, the volume of a gas changes by $\frac{1}{273.15}\left(\approx \frac{1}{273}\right)$ of the volume at $0^{\circ} \mathrm{C}$.
(4) Graphical representation of Charle's law:Graph between V and T at constant pressure is called isobar or isoplestics and is always a straight line. A plot of V versus $t\left({ }^{\circ} \mathrm{C}\right)$ at constant pressure is a straight line cutting the temperature axis at $-273.15^{\circ} \mathrm{C}$. It is the lowest possible temperature.

(5) To lower the temperature of a substance, we reduce the thermal energy. Absolute zero (OK) is the temperature reached when all possible thermal energy has been removed from a substance. Obviously, a substance cannot be cooled any further after all thermal energy has been removed.
(6) At constant mass and pressure density of a gas is inversely proportional to it absolute temperature.

Thus, $d \propto \frac{1}{T} \propto \frac{1}{V} \quad\left[\because V=\frac{\text { mass }}{\mathrm{d}}\right] \quad$ or $\quad \frac{d_{1}}{d_{2}}=\frac{T_{2}}{T_{1}}=\frac{V_{2}}{V_{1}}=\ldots \ldots .=K$
(7) Use of hot air balloons in sports and meteorological observations is an application of Charle's law.

