Avogadro's law.

(1) According to this law, "Equal volumes of any two gases at the same temperature and pressure contain the same number of molecules."

Thus, $V \propto n$ (at constant T and P)
or $V=K n \quad$ (where K is constant)
or $\frac{V_{1}}{n_{1}}=\frac{V_{2}}{n_{2}}=\ldots \ldots . .=K$

(2) One mole of any gas contains the same number of molecules (Avogadro's number $=6.02 \times 10^{23}$) and by this law must occupy the same volume at a given temperature and pressure. The volume of one mole of a gas is called molar volume, $\mathbf{V}_{\mathbf{m}}$ which is $22.4 \mathrm{~L} \mathrm{~mol}{ }^{-1}$ at S.T.P. or N.T.P.
(3) This law can also express as, "The molar gas volume at a given temperature and pressure is a specific constant independent of the nature of the gas".

Thus, $V_{m}=$ specific constant $=22.4 \mathrm{Lmol}^{-1}$ at S.T.P. or N.T.P.
(4) This law is widely applicable to solve the problems of reactive gaseous system.

Note: Loschmidt number: It is the number of molecules present in 1 c.c. of a gas or vapor at S.T.P. Its value is 2.687×10^{19} per c.c.

