Ideal gas equation.

(1) The simple gas laws relating gas volume to pressure, temperature and amount of gas, respectively, are stated below :

Boyle's law: $\quad P \propto \frac{1}{V}$ or $V \propto \frac{1}{P} \quad$ (n and T constant)
Charle's law: $V \propto \mathrm{~T} \quad$ (n and P constant)
Avogadro's law: $\quad V \propto n \quad$ (T and P constant)
If all the above law's combines, then

$$
\begin{array}{ll}
& V \propto \frac{n T}{P} \\
\text { or } & V=\frac{n R T}{P} \\
\text { or } & P V=n R T
\end{array}
$$

This is called ideal gas equation. R is called ideal gas constant. This equation is obeyed by isothermal and adiabatic processes.
(2) Nature and values of R:From the ideal gas equation, $R=\frac{P V}{n T}=\frac{\text { Pressure } \times \text { Volume }}{\text { mole } \times \text { Temperatur } \mathrm{e}}$

$$
=\frac{\frac{\text { Force }}{\text { Area }} \times \text { Volume }}{\text { mole } \times \text { Temperatur } \mathrm{e}}=\frac{\text { Force } \times \text { Length }}{\text { mole } \times \text { Temperatur } \mathrm{e}}=\frac{\text { Work or energy }}{\text { mole } \times \text { Temperatur } \mathrm{e}} .
$$

So, R is expressed in the unit of work or energy $\mathrm{mol}^{-1} \mathrm{~K}^{-1}$.
Different values of R are summarizedbelow:

$$
\begin{aligned}
R & =0.0821 \mathrm{Latm} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \\
& =8.3143 \times 10^{7} \mathrm{erg} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \\
& =8.3143 \mathrm{joule} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \quad \text { (S.I. unit) } \\
= & 8.3143 \mathrm{Nm} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \\
& =8.3143 \mathrm{KPa} \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \\
= & 8.3143 \mathrm{MPa} \mathrm{~cm}^{3} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \\
& =8.3143 \times 10^{-3} \mathrm{~kJ} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \\
& =5.189 \times 10^{19} \mathrm{eV} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \\
& =1.99 \mathrm{calmol}^{-1} \mathrm{~K}^{-1}
\end{aligned}
$$

$$
=1.987 \times 10^{-3} \mathrm{~K} \mathrm{calmol}^{-1} \mathrm{~K}^{-1}
$$

Note: Although R can be expressed in different units, but for pressure-volume calculations, R must be taken in the same units of pressure and volume.
(3) Gas constant, R for a single molecule is called Boltzmann constant (k)

$$
\begin{aligned}
k= & \frac{R}{N}=\frac{8.314 \times 10^{7}}{6.023 \times 10^{23}} \mathrm{ergs} \mathrm{~mole}^{-1} \text { degree }^{-1} \\
& =1.38 \times 10^{-16} \mathrm{ergs} \mathrm{~mol}^{-1} \text { degree }^{-1} \text { or } 1.38 \times 10^{-23} \text { joule mol }^{-1} \text { degree }^{-1}
\end{aligned}
$$

(4) Calculation of mass, molecular weight and density of the gas by gas equation

$$
\begin{array}{ll}
P V=n R T=\frac{m}{M} R T & \left(\because n=\frac{\text { mass of the gas }(m)}{\text { Molecular weight of the gas }(M)}\right) \\
\therefore M=\frac{m R T}{P V} & \\
d=\frac{P M}{R T} & \left(\because d=\frac{m}{V}\right) \\
\text { or } \frac{d T}{P}=\frac{M}{R} &
\end{array}
$$

Since M and R are constant for a particular gas,
Thus, $\frac{d T}{P}=$ constant
Thus, at two different temperature and pressure

$$
\frac{d_{1} T_{1}}{P_{1}}=\frac{d_{2} T_{2}}{P_{2}}
$$

(5) Gas densities differ from those of solids and liquids as,
(i) Gas densities are generally stated in g / L instead of $\mathrm{g} / \mathrm{cm}^{3}$.
(ii) Gas densities are strongly dependent on pressure and temperature as,

$$
\begin{aligned}
& d \propto P \\
& d \propto \frac{1}{T}
\end{aligned}
$$

Densities of liquids and solids, do depend somewhat on temperature, but they are far less dependent on pressure.
(iii) The density of a gas is directly proportional to its molar mass. No simple relationship exists between the density and molar mass for liquid and solids.
(iv) Density of a gas at STP $=\frac{\text { molar mass }}{22.4}$

$$
\begin{aligned}
& d\left(N_{2}\right) \text { At STP }=\frac{28}{22.4}=1.25 g L^{-1} \\
& d\left(O_{2}\right) \text { At STP }=\frac{32}{22.4}=1.43 g L^{-1}
\end{aligned}
$$

