Dalton's law of partial pressures.

(1) According to this law, "When two or more gases, which do not react chemically are kept in a closed vessel, the total pressure exerted by the mixture is equal to the sum of the partial pressures of individual gases."

Thus, $P_{\text {total }}=P_{1}+P_{2}+P_{3}+$ \qquad
Where $P_{1}, P_{2}, P_{3}, \ldots \ldots$. are partial pressures of gas number $1,2,3$ \qquad
(2) Partial pressure is the pressure exerted by a gas when it is present alone in the same container and at the same temperature.

Partial pressure of a gas
$\left(P_{1}\right)=\frac{\text { Number of moles of the gas }\left(n_{1}\right) \times P_{\text {Total }}}{\text { Total number of moles }(n) \text { in the mixture }}=$ Mole fraction $\left(X_{1}\right) \times P_{\text {Total }}$
(3) If a number of gases having volume $V_{1}, V_{2}, V_{3} \ldots \ldots$ at pressure $P_{1}, P_{2}, P_{3} \ldots \ldots \ldots$ are mixed together in container of volume V , then,

$$
\begin{aligned}
& \quad P_{\text {Total }}=\frac{P_{1} V_{1}+P_{2} V_{2}+P_{3} V_{3} \ldots . .}{V} \\
& \text { or }=\left(n_{1}+n_{2}+n_{3} \ldots . .\right) \frac{R T}{V} \quad(\because P V=n R T) \text { or }=n \frac{R T}{V}\left(\because n=n_{1}+n_{2}+n_{3} \ldots . .\right)
\end{aligned}
$$

(4) Applications:This law is used in the calculation of following relationships,
(i) Mole fraction of a gas $\left(X_{1}\right)$ in a mixture of gas $=\frac{\text { Partial pr essure of a gas }\left(P_{1}\right)}{P_{\text {Total }}}$
(ii) \% of a gas in mixture $=\frac{\text { Partial pr essure of a gas }\left(P_{1}\right)}{P_{\text {Total }}} \times 100$
(iii) Pressure of dry gas collected over water: When a gas is collected over water, it becomes moist due to water vapor which exerts its own partial pressure at the same temperature of the gas. This partial pressure of water vapors is called aqueous tension. Thus,

$$
\begin{aligned}
P_{\text {dry gas }}= & P_{\text {moist gas }} \text { or } P_{\text {Total }}-P_{\text {water vapo ur }} \\
& \text { or } P_{\text {dry gas }}=P_{\text {moist gas }}-\text { Aqueous tension (Aqueous tension is directly proportional }
\end{aligned}
$$ to absolute temperature)

(iv) Relative humidity (RH) at a given temperature is given by :

$$
R H=\frac{\text { Partial pr essure of water in air }}{\text { Vapour pre ssure of water }} .
$$

(5) Limitations:This law is applicable only when the component gases in the mixture do not react with each other. For example, N_{2} and O_{2}, CO and CO_{2}, N_{2} and $\mathrm{Cl}_{2}, \mathrm{CO}$ and N_{2} etc. But this law is not applicable to gases which combine chemically. For example, H_{2} and $\mathrm{Cl}_{2}, \mathrm{CO}$ and $\mathrm{Cl}_{2}, \mathrm{NH}_{3}, \mathrm{HBr}$ and $\mathrm{HCl}, \mathrm{NO}$ and O_{2} etc.

Note: $N_{2}(80 \%)$ has the highest partial pressure in atmosphere.
(6) Another law, which is really equivalent to the law of partial pressures and related to the partial volumes of gases is known as Law of partial volumes given by Amagat. According to this law, "When two or more gases, which do not react chemically are kept in a closed vessel, the total volume exerted by the mixture is equal to the sum of the partial volumes of individual gases."

Thus, $V_{\text {Total }}=V_{1}+V_{2}+V_{3}+\ldots .$.
Where $V_{1}, V_{2}, V_{3}, \ldots \ldots$. are partial volumes of gas number $1,2,3$.....

