Group displacement law.

Soddy, Fajans and Russell (1911-1913) observed that when an α-particle is lost, a new element with atomic number less by 2 and mass number less by 4 is formed. Similarly, when β particle is lost, new element with atomic number greater by 1 is obtained. The element emitting then α or β-particle is called parent element and the new element formed is called daughter element. The above results have been summarized as Group displacement laws as follows:
(1) When an α-particle is emitted, the new element formed is displaced two positions to the left in the periodic table than that of the parent element (because the atomic number decreases by 2).

For example, when

$$
{ }_{92} U^{238} \longrightarrow{ }_{90} \mathrm{Th}^{234}+{ }_{2} \mathrm{He}^{4}
$$

(2) When a β-particle is emitted, the new element formed is displaced one position to the right in the periodic table than that of the parent element (because atomic number increased by 1).

For example,

$$
{ }_{90} \mathrm{Th}^{234} \longrightarrow{ }_{91} \mathrm{~Pa}^{234}+{ }_{-1} e^{0}{ }_{i}{ }_{6} \mathrm{C}^{14} \longrightarrow{ }_{7} N^{14}+{ }_{-1} e^{0}
$$

Hence, group displacement law should be applied with great care especially in the case of elements of lanthanide series (57 to 71), actinide series (89 to 103), VIII group (26 to 28; 44 to 46; 76 to 78), IA and IIA groups. It is always beneficial to keep in mind the setup and skeleton of the extended form of periodic table.

IA	IIA	IIIB	IVB	VB	VIB	VII	VIII			IB	IIB	IIIA	IVA	VA	VIA	VII
Zero																
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17

	IA				
	1	IIA	IIIB	IVB	Zero
	At. No.				18
1st period	1	-			At. No.
2nd period	3	-	-	-	2
3rd period	11	-	-	10	
4th period	19	-	-	-	18
5th period	37	-	-	-	36
6th period	55	56	$57 *-71$	72	84
7th period	87	88	$89!-103$	104	86

*Lanthanides, ! Actinides

Important tips

α-Decay produces isodiapher i.e., the parent and daughter nuclide formed by α-decay have same isotopic number, i.e., difference between the number of neutrons and protons is same. For example,

Thus note that an α-decay leads to
(i) Decrease in atomic weight, mass number and number of nucleons by four units.
(ii) Decrease in number of protons, neutrons, nuclear charge and atomic number by two units.
(iii) Increase in n / p ratio.
(G) β-Decay results in the formation of an isobaric element i.e., parent and daughter nuclide have different atomic numbers but same mass number. For example,

$$
{ }_{19} K^{40} \longrightarrow{ }_{20} C a^{40}+{ }_{-1} e^{0}
$$

Thus note that a β-decay leads to
(i) No change in atomic weights, mass number and number of nucleons.
(ii) Decrease in number of neutrons by one unit.
(iii) Increase in nuclear charge, number of protons and atomic number by one unit.
(iv) Decrease in n / p ratio.

It is important to note that although β-particle (electron) is not present in the nucleus, even then it is emittedfrom the nucleus since a neutron at first breaks down to a proton and electron.

$$
{ }_{0} n^{1} \longrightarrow{ }_{1} p^{1}+{ }_{-1} e^{0}
$$

The proton is retained by the nucleus while the electron is emitted as a β-particle.
Emission of 1α-particle and 2β-particles in succession produces an isotope of the parent element. For example,

$$
{ }_{92} U^{235} \xrightarrow{-\alpha}{ }_{90} \mathrm{Th}^{231} \xrightarrow{-\beta}{ }_{91} \mathrm{~Pa}^{231} \xrightarrow{-\beta}{ }_{92} U^{231}
$$

(G) This law helps to fix the position of the radioelements in the periodic table.
(G) To determine the number of α - and β-particles emitted during the nuclear transformation. It can be done in following manner :

$$
\begin{align*}
& { }_{c}^{a} X \rightarrow{ }_{d}^{b} Y+x{ }_{2}^{4} \mathrm{He}+y_{-1} e^{0}, \\
& a=b+4 x \text { or } x=\frac{a-b}{4} \tag{i}\\
& c=d+2 x-y \tag{ii}
\end{align*}
$$

where $x=$ no. of α-emitted, $y=$ no. of β-emitted substituting the value of x from eq. (i) in eq. (ii) we get $c=d+\left(\frac{a-b}{4}\right) 2-y ; y=d+\left[\frac{a-b}{2}\right]-c$

