Radioactive disintegration series.

The phenomenon of natural radioactivity continues till stable nuclei are formed. All the nuclei from the initial element to the final stable element constitute a series known as disintegration series. Further we know that mass numbers change only when α -particles are emitted (and not when β -particles are emitted) causing the change in mass of 4 units at each step. Hence the mass numbers of all elements in a series will fit into one of the formulae.

$$4n, 4n+1, 4n+2 \text{ and } 4n+3$$

Hence there can be only four disintegration series

Series	4 <i>n</i>	4n + 1	4n + 2	4n + 3
Jeries	411	4/1 + 1	4n + 2	4n + 3
n	58	59	59	58
Parent element	₉₀ Th ²³²	$_{94} Pu^{241}$	$_{92}U^{238}$	$_{92} U^{235}$
Half life	1.39 × 10 10 years	10 years	4.5×10 ⁹ years	7.07×10 ⁸ years
Prominent	$_{90}$ Th 232	₉₃ Np ²³⁷	$_{92}U^{238}$	$_{89}$ Ac^{227}
element				
Half life	1.39 × 10 10 years	2.2×10 ⁶ years	4.5×10 ⁹ years	13.5 years
Name of series	Thorium	Neptunium	Uranium (Natural)	Actinium
	(Natural)	(Artificial)		(Natural)
End product	$_{82} Pb^{208}$	$_{83} Bi^{209}$	$_{82}Pb^{206}$	$_{82} Pb^{207}$
n	52	52	51	51
Number of lost	$\alpha = 6$	$\alpha = 8$	$\alpha = 8$	$\alpha = 7$
particles	$\beta = 4$	$\beta = 5$	$\beta = 6$	$\beta = 4$

The numbers indicate that in a particular series the mass numbers of all the members are either divisible by 4 (in case of 4n) or divisible by 4 with remainder of 1, 2 or 3 (in the rest three series), n being an integer. In other words, the mass numbers of the members of 4n, 4n + 1, 4n + 2 and 4n + 3 series are exactly divisible by 4, 4 + 1, 4 + 2 and 4 + 3 respectively.

Note: 4n + 1 series is an artificial series while the rest three are natural.

The end product in the 4n + 1 series is bismuth, while in the rest three, a stable isotope of lead is the end product.

The 4n + 1 series starts from plutonium $_{94} Pu^{241}$ but commonly known as neptunium series because neptunium is the longest-lived member of the series.

The 4n + 3 series actually starts from $_{92}\,U^{235}$.