
- Physical state, colour and odour: Dimethyl ether and ethyl methyl ether is gas at ordinary temperature while the other lower homologues of ethers are colourless liquid with characteristic 'ether smell'.
- **Dipole nature**: Ethers have a tetrahedral geometry i.e., oxygen is sp³ hybridized. The C— O—C angle in ethers is 110°. Because of the greater electronegativity of oxygen than carbon, the C—O bonds are slightly polar and are inclined to each other at an angle of 110°, resulting in a net dipole moment.

Bond angle of ether is greater than that of tetrahedral bond angle of 109°28'.

• **Solubility and boiling point:** Due to the formation of less degree of hydrogen bonding, ethers have lower boiling point than their corresponding isomeric alcohols and are slightly soluble in water.

Preparation of Ethers:

a) From alcohols:

$$CH_3CH_2OH \xrightarrow{\quad H_2SO_4 \quad} CH_3CH_2 \xrightarrow{\quad O-CH_2CH_3}$$

Order of dehydration of alcohol leading to formation of ethers: $1^{\circ} > 2^{\circ} > 3^{\circ}$

$$CH_3CH_2OH + CH_2N_2 \xrightarrow{HBF_4} CH_3CH_2-O-CH_3 + N_2$$

b) Williamson's synthesis:

$$R-X + Na^+ O-R' \rightarrow R-O-R' + Na^+ X^-$$

In case of tertiary substrate elimination occurs giving alkenes.

From alkenes:.

$$CH_3 \xrightarrow{C} C=CH_2 + H \longrightarrow CCH_3 \xrightarrow{H_2SO_4} CH_3 \longrightarrow CH_3 \longrightarrow CH_3$$

$$CH_3 \xrightarrow{C} C+CH_3 \xrightarrow{C} C+CH_3 \longrightarrow CH_3 \longrightarrow CH_3$$

From Grignard reagent: Treating a - halo ethers with suitable Grignard reagents.

$$CH_3-O-CH_2CI+CH_3MgI \xrightarrow{Dry} CH_3-O-CH_2CH_3+Mg$$

On standing in contact with air, most aliphatic ethers are converted slowly into unstable peroxides. The presence of peroxides is indicated by formation of a red colour when the ether is shaken with an aqueous solution of ferrous ammonium sulfate and potassium thiocyanate?

Peroxide + Fe²⁺
$$\rightarrow$$
 Fe³⁺ $\xrightarrow{SCN^-}$ Fe(SCN)_n⁽³⁻ⁿ⁾⁻(n =1to6)
Red

f) Halogenation of ethers:

CH₃CH₂—O—CH₂CH₃—
$$\xrightarrow{\text{Cl}}$$
 CH₃CH₂—O—CHCH₃— $\xrightarrow{\text{Cl}}$ CH₃CH—O—CHCH₃

$$\begin{vmatrix} & & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\$$

g) Ethers as base:

$$CH_3CH_2 - \overset{\bullet}{\underset{-}{\circ}} - CH_2CH_3 + H - Br \rightarrow CH_3CH_2 - \overset{\bullet}{\underset{-}{\circ}} - CH_2CH_3Br^-$$

h) Reaction With Cold conc. HI/HBr:

$$R \longrightarrow O \longrightarrow R' + Cold HI \longrightarrow R-OH + R'I (R' < R)$$

i) Hot conc. HI/HBr:

$$R\longrightarrow O\longrightarrow R'$$
 +Hot HI \longrightarrow RI + R'I + H₂O

i) Reaction with acid chlorides and anhydrides:

$$C_2H_5 - O - C_2H_5 \ + \ CH_3COCl \xrightarrow[Anhy\ ZnCl_2]{\Delta} C_2H_5Cl \ + \ CH_3COOC_2H_5$$

j) Electrophilic substitution reactions

Epoxides or Oxiranes:

Preparation

a) Oxidation of ethylene :