Phenol: 2^0 Alcohol: R_2 CHOH + $ZnCl_2$ +HCl \rightarrow R_2 CHCl White turbidity after 5-10 min.

• 3^0 Alcohol: $R_3CHOH + ZnCl_2 + HCl \rightarrow R_3CHCl$ white turbidity instantaneously.

2. Victor Meyer Test

1° alcohol:
$$RCH_2OH \xrightarrow{P/I_2} RCH_2I \xrightarrow{AgNO_2} RCH_2NO_2 \xrightarrow{HNO_2} R - C - NO_2 \ NOH \ (nitrolic acid) \ NaOH \ CH_3CNO_2 \ Sodium salt of nitrolic acid \ NONa \ Ref colour.$$

Nitrolic acid on treatment with alkali gives colouration

2° alcohol:

R CHOH
$$\xrightarrow{P/I_2}$$
 R CHI $\xrightarrow{AgNO_2}$ R CHNO₂ R $\xrightarrow{HNO_2}$ R $\xrightarrow{HNO_2}$ R \xrightarrow{R} $\xrightarrow{R$

3° alcohol:
$$R_3C - OH \xrightarrow{P/I_2} R_3C - I \xrightarrow{AgNO_2} R_3C - NO_2$$

$$\downarrow HNO_2$$
No reaction

(colour less)

Phenols:

Preparation:

- Simplest phenols, because of hydrogen bonding have quite high boiling points.
- o-nitrophenol is, steam volatile and also is less soluble in water because of intramolecular hydrogen bonding

Chemical Properties of Phenols

a) Formation of Esters

Phenyl esters (RCOOAr) are not formed directly from RCOOH. Instead, acid chlorides or anhydrides are reacted with ArOH in the presence of strong base

$$(CH_3CO)_2O + C_6H_5OH + NaOH \rightarrow CH_3COOC_6H_5 + CH_3COONa + H_2O$$

Phenyl acetate

$$C_6H_5COCl + C_6H_5OH + NaOH \rightarrow C_6H_5COOC_6H_5 + Na^+Cl^- + H_2O$$

Phenyl benzoate

b) Displacement of OH group: ArOH + Zn $\stackrel{\Delta}{\longrightarrow}$ ArH + ZnO (poor yields)

c) Hydrogenation

cyclohexanol

d) Oxidation to Quionones

$$\begin{array}{c|c}
OH & O \\
\hline
O_2 & O \\
\hline
Or CrO_3
\end{array}$$
phenol

benzo-1,4-quinone

e) Electrophilic SubstitutionThe —OH and even more so the —O(phenoxide) are strongly activating ortho ,para - directing

Special mild conditions are needed to achieve electrophilic monosubstituion in phenols because their high reactivity favors both polysubstitution and oxidation

f) Halogenation

h) Nitrosation

i) Nitration

j) Sulfonation

PhOH
$$\xrightarrow{H_2SO_4}$$
 15-20°C $\xrightarrow{}$ SO₃H (rate-controlled) OH

PhOH $\xrightarrow{H_2SO_4}$ 15-20°C $\xrightarrow{}$ HO₃S (eqbm-controlled)

k) Diazonium salt coupling to form azophenols

Coupling (G in ArG is an electron - releasing group)

$$ArN_2^+ + C_6H_5G \longrightarrow p-G \longrightarrow C_6H_4 \longrightarrow N = N \longrightarrow Ar (G = OH, NR_2, NHR, NH_2)$$

I) Mercuration

m) Ring alkylation

$$C_6H_5OH + \begin{cases} CH_3CH = CH_2 & H_2SO_4 \\ (CH_3)_2CHOH & Or HF \end{cases}$$
 o- and p-C₆H₄ + H₂O CH(CH₃)₂

RX and AlCl3 give poor yields because AlCl3 coordinates with O.

n) Kolbe synthesis of phenolic carboxylic acids

$$C_6H_5ONa + O = C = O$$

$$0 + O = O$$

$$0 + O$$

Phenoxide carbanion adds at the electrophilic carbon of CO₂, para product is also possible.

o) Reimer - Tiemann synthesis of phenolic aldehydes

The electrophile is the dichlorocarbene, CCl_2 , formation of carbene is an example of α -elimination. $\overline{O}H + HCCl_3 \xrightarrow{-HCl} \overrightarrow{C}Cl_2$

p) Synthesis of (a) aspirin (acetylsalicylic acid) (b) oil of wintergreen (methyl salicylate)

a) OH OH OCOCH₃

$$\xrightarrow{1. CO_2, KOH}$$
COOH
$$\xrightarrow{A_0_2O}$$
COOH

Ethers:

Physical Properties of Ethers