Organic Compounds Containing Halogens:

Organic Compounds Containing Halogens can be divided into two groups:

- Alkyl Halides: Aliphatic carbon chain with halogen atom(s) as substitution.. Example: Chlorobutane.
- **Aryl Halides:** Aromatic carbon ring with halogen atom(s) as substitution on ring. Example: Chlorobenzene.

Methods of Preparation of Alkyl Halides:

Grove's process: Replacement of "OH" group in primary and secondary alcohols with an "X' atom in presence of Zinc chloride.

$$\overrightarrow{ROH} + \overrightarrow{Z} \overrightarrow{NCl_2} \longrightarrow \overrightarrow{R} \xrightarrow{f} \overrightarrow{O} \longrightarrow \overrightarrow{Z} \overrightarrow{NCl_2} \xrightarrow{S_N 1} \xrightarrow{R} + [HO \longrightarrow \overrightarrow{Z} \overrightarrow{NCl_2}]$$

The reaction follows S_N 2 mechanism when the concentration of zinc chloride is low.

(b) Darzen Process: Reaction of thionyl chloride with straight-chain primary alcohols without presence or absence of pyridine.

In presence of pyridine:

$$ROH + SOCl_2 \rightarrow HCl + ROSOCl$$

$$HCl+C_5H_5N \rightarrow C5H5NH^++Cl^-$$

$$ROSOCl + Cl^{-} \rightarrow RCl + SO_2 \quad (S_N 2)$$

- Action of a phosphorus halide on the alcohol: ROH + PCl₅ → RCl + HCl + POCl₃.
- By addition of Halogen to an alefins: R-CH=CH₂ +Br₂+CCl₄ →R-CH(Br)CH₂Br
- Photohalogenation: CH₄ + Cl₂ +hv → CH₃Cl + HCl
- Displacement of one halogen atom by another:RCl + NaI →RI + NaCl
- Bonodine Hünsdiecker Reaction: RCO₂Ag + Br₂→RBr + CO₂ + AgBr
- Hydrohalogenation of unsaturated hydrocarbons:
 - o In absence of peroxide: RCH=CH2 +HBr→RCH(Br)CH3
 - In presence of peroxide: RCH=CH2 +HBr + Peroxide
 →RCH₂CH_{2Br}

Methods of Preparation of aryl halides

- Halogenation: Ar-H + X2 +Lewis Base \rightarrow Ar-x + HX
- From diazonium salts:

$$\circ$$
 C₆H₅N₂Cl + HBF₄ \rightarrow C₆H₅F (Schiemann Reaction)

$$\circ$$
 C₆H₅N₂Cl + CuCl → C₆H₅Cl (Sandmeyer Reaction)

 \circ C₆H₅N₂Cl + Cu powder → C₆H₅Cl (Gatterman Reaction)

S_N1 and S_N2 mechanism:

	$S_N 1$	S _N 2
Steps	Two:	One:

	(1) $R:Xl \rightarrow R^+ + X^-$ (2) $R^+ + Nu^-l \rightarrow RNu$	$R:X + Nu^{-}l \rightarrow RNu + X^{-}$
Rate	=K [RX] (1st order)	=K[RX] [:Nu ⁻] (2nd order)
TS of slow step	R C δ+ χ δ-	R R R &-Nu *****X ****X ****X *****X ******X ******
Stereochemistry	Inversion and racemization	Inversion (backside attack)
Molecularity	Unimolecular	Bimolecular
Reactivity structure of R Determining Factor Nature of X Solvent effect on rate	3°> 2°> 1°> CH ₃ Stability of R ⁺ RI> RBr> RCl> RF Rate increases in polar solvent	CH ₃ > 1°> 2°> 3° Steric hindrance in R group RI> RBr> RCl> RF with Nu ⁻ there is a large rate increase in polar aprotic solvents.
Effect of nucleophile	No effect as it does not appear in the rate expression.	Rate depends on nucleophilicity I ⁻ > Br ⁻ > Cl ⁻ ; RS ⁻ > RO ⁻
Catalysis	Lewis acid, eg. Ag ⁺ , AlCl ₃ , ZnCl ₂	None
Competitive reaction	Elimination, rearrangement	Elimination

Reactions of Alkyl Halides:

• Hydrolysis: : $RX + OH^- \rightarrow ROH + X^-$

- Williamson Synthasis: R-ONa $+R'X \rightarrow R-R' + NaX$
- Reaction with dry silver oxide: $2R-X + Ag_2O \rightarrow R-O-R$
- Reaction with sodio-Alkynides: R-C=C-Na +X-R→ R-C=C-R +NaX
- Reaction with potassium-cyanide: KCN+X-R→ RCN +KX
- Reaction with silver-cyanide: $AgCN+X-R \rightarrow RNC + AgX$
- Reaction with silver-nitrite: $AgNO_2 + X R \rightarrow RNO_2 + AgX$
- Reaction with potassium-nitrite: $KNO_2+X-R \rightarrow R-O-N=O+KX$
- Fridal Craft Reaction: $R-X + C_6H_6 + AlCl_3 \rightarrow C_6H_5-R$
- Malonic Ester Synthasis: R-X + ⁻CH(CO₂C₂H₅)₂ →R-CH(CO₂C₂H₅)₂ +HX
- Acetoacetic Ester Synthasis: R-X + ⁻CH(CO₂CH₃)₂ →R-CH(CO₂CH₃)₂ +HX
- Reaction with Ammonia: $R-X + NH_3 \rightarrow R-NH_2 + HX$
- Wurtz Reaction: $2R-I+2Na \rightarrow R-R+2NaI$
- Dehydrohalogenation: CH₃.CH₂.CH₂Br + alco.KOH → CH₃-CH = CH₂ + KBr + H₂O
- Reaction with alcoholic AgNO₃: R-X +AgNO₃ \rightarrow R⁺ + AgX \downarrow +HNO₃

Substitution Versus Elimination:

CH ₃ X	RCH ₂ X	R ₂ CHX	R ₃ CX
Methyl	1°	2°	3°

Bimolecular reactions only			$S_N 1/E1$ or E_2
Gives S _N 2 reactions	Gives mainly S _N 2 except with a hindered strong base [e.g., (CH ₃) ₃ CO ⁻] and then gives mainly E2.	Gives mainly S _N 2 with weak bases (e.g., I ⁻ , CN ⁻ , RCO ₂ ⁻) and mainly E2 with strong bases (e.g., RO ⁻)	No S _N 2 reaction. In solvolysis gives S _N 1/E1, and at lower temperature S _N 1 is favoured. When a strong base (e.g., RO ⁻) is used. E2 predominates.

Haloform(Tri halide):

- Preparation: It can be prepared from any alcohol having –
 CH(OH)CH₃ group or from the aldehydes and ketones formed from above type of alcohols i.e, from a carbonyl compound having three a -hydrogen atoms by the action of X₂ and an alkali or Na₂CO₃.
- Laboratory Preparation of CHCl₃:

$$\text{CH}_3\text{CH}_2\text{OH} \xrightarrow{\text{oxidation by CI}_2} \text{CH}_3\text{CHO} \xrightarrow{\text{chlorination}} \text{CCI}_3\text{CHO} \xrightarrow{\text{Ca(OH)}_2} \text{hydrolysis} \rightarrow \text{CHCI}_3$$

• Physical properties of CHCl₃: colourless liquid with sweet smell and test. It is heavier than water and insoluble in it but soluble in alcohol and ether.

Chemical Reactions of CHCl₃:

- Oxidation: $CHCl_3 + 1/2 O_2 \rightarrow HCl + COCl_2$ (phosgene)
- Hydrolysis: $CHCl_3 + 4NaOH \rightarrow HCOONa + 3NaCl + 2H_2O$
- Carbyl amine reactions: CHCl₃ + CH₃NH₂ + 3NaOH → CH₃N≡C +3NaCl +3H₂O