Integral of the type $\boldsymbol{f}\left[\boldsymbol{x},(\boldsymbol{a x}+\boldsymbol{b})^{m_{1} n_{1}},(\boldsymbol{a x}+\boldsymbol{b})^{m_{2} / n_{2}} \ldots\right]$ where f is a rational function and $\boldsymbol{m}_{1}, \boldsymbol{n}_{1}, \boldsymbol{m}_{2}, \boldsymbol{n}_{2}$ are Integers.

To evaluate such type of integral, we transform it into an integral of rational function by putting $(a x+b)=t^{s}$, where s is the least common multiple (L.C.M.) of the numbers n_{1}, n_{2}.

Integrals of the form $\int x^{m}\left(a+b x^{n}\right)^{p} d x$
Case I: If $p \in N$ (Natural number). We expand the integral with the help of binomial theorem and integrate.

