Integrals using Euler's substitution

Integrals of the form $\int f(x), \sqrt{\left(a x^{2}+b x+c\right)} d x$ are calculated with the aid of one of the three Euler substitution:
(1) $\sqrt{a x^{2}+b x+c}=t \pm x \sqrt{a}$, if $a>0$.
(2) $\sqrt{a x^{2}+b x+c}=t x \pm \sqrt{c}$, if $c>0$.
(3) $\sqrt{a x^{2}+b c+c}=(x-\alpha) t$, if $a x^{2}+b x+c=a(x-\alpha)(x-\beta)$, i.e., if x is real root of $\left(a x^{2}+b x+c\right)$.

Note: The Euler substitution often lead to rather some calculations, therefore they should be applied only when it is difficult to find another method for calculating the given integral.

