Integrals using Euler's substitution

Integrals of the form $\int f(x)$, $\sqrt{ax^2 + bx + c} dx$ are calculated with the aid of one of the three Euler substitution:

- (1) $\sqrt{ax^2 + bx + c} = t \pm x\sqrt{a}$, if a > 0.
- (2) $\sqrt{ax^2 + bx + c} = tx \pm \sqrt{c}$, if c > 0.
- (3) $\sqrt{ax^2 + bc + c} = (x \alpha)t$, if $ax^2 + bx + c = a(x \alpha)(x \beta)$, *i.e.*, if x is real root of $(ax^2 + bx + c)$.

Note: The Euler substitution often lead to rather some calculations, therefore they should be applied only when it is difficult to find another method for calculating the given integral.