
Evaluation of the various forms of Integrals by use of Standard 
Results. 

 

(1) Integral of the form  
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(7) Integral of the form dxcbxax 2   

 

(8) Integral of the form dxcbxaxqpx  2)(  

 

(9) Integral of the form  QP

dx  

 



(1) Integrals of the form  
,
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 where cbxax 2   cannot be resolved into 
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Case (i): When 042  acb  














 







 




 ,

2

4

2

1
2

22
2

a

acb

a

b
x

dx

acbxax

dx   





 22
 form

ax

dx  

c

a

acb

a

b
x

a

acb

a

b
x

a

acba











2

4

2

2

4

2log

2

4
.2

1
.

1
2

2

2
c

acbbax

acbbax

acb









42

42
log

4

1
2

2

2
 

 
 
 
 
 
 
 
 
 
Case (ii): When 042  acb  
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Working rule for evaluating   cbxax

dx
2

 :  To evaluate this form of integrals proceed as 

follows : 
(i) Make the coefficient of 2x  unity by taking ‘a’ common from .2 cbxax   
(ii) Express the terms containing 2x  and x  in the form of a perfect square by adding and 
subtracting the square of half of the coefficient of x. 
(iii) Put the linear expression in x equal to t and express the integrals in terms of t. 

(iv) The resultant integrand will be either in   22 ax

dx  or   22 ax

dx or   22 xa

dx  standard form. 

After using the standard formulae, express the results in terms of x. 
 
 

(2) Integral of the form  


dx
cbxax

qpx
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: The integration of the function 
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
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effected by breaking qpx   into two parts such that one part is the differential coefficient of 

the denominator and the other part is a constant. 
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The integral on R.H.S. can be evaluated by the method discussed in previous section. 
(i) If ,042  acb  then 

k
bac

bax

baca

bpaq
cbxax

a

p
dx

cbxax

qpx














 

2

1

2

2
2

4

2
tan

4

)2(
||log

2
 

(ii) If ,042  acb then 
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(3) Integral of the form 
 cbxax

dx
2

 : To evaluate this form of integrals proceed as 

follows : 

(i) Make the coefficient of 2x  unity by taking a common from .2 cbxax   

Then,  
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x 2 , by the method of completing the square in the form, 22 XA   or 

22 AX  or 22 AX   where, X is a linear function of x and A is a constant. 

(iii) After this, use any of the following standard formulae according to the case under 
consideration 
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(4) Integral of the form 



dx
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2

: To evaluate this form of integrals, first we write, 
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d
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Where M and N are constants. 
By equating the coefficients of x and constant terms on both sides, we get 
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  








 










cbxax

dx

a

bp
qdx

cbxax

bax

a

p
dx

cbxax

qpx
222 2

2

2
 ,21 II   (say) 

Now, 



 dx

cbxax

bax

a

p
I

2
1

2

2
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and 2I  is calculated as in the previous section. 
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(5) Integrals of the form dx,
cbxax

f(x)
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where f(x)  is a polynomial of degree 2 or greater 

than 2: 
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The integrals on R.H.S. can be obtained by the methods discussed earlier. 

 

 

 

(6) Integrals of the form  
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Then, the given integral reduces to the form  
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Important Tips 
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 Trigonometric twins: ,tan dxx ,cot dxx  
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(7) Integrals of the forms   dxcbxax 2  : To evaluate this form of integrals, express 

cbxax 2  in the form  22)(  xa  by the method of completing the square and apply the 

standard result discussed in the above section according to the case as may be. 
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(8) Integrals of the form   dxcbxaxq)(px 2  : To evaluate this form of integral, 

proceed as follows: 

(i) First express )( qpx  as Ncbxax
dx

d
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Where, M and N are constant. 

 

(ii) Compare the coefficients of x and constant terms on both sides, will get 
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(iii) Now, write the given integral as 
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(iv) To evaluate ,1I  put tcbxax 2  and to evaluate ,2I  follows the method discussed in (7) 

 

 

 

 

 



(9) Integrals of the form  QP

dx ,(where P and Q and linear or quadratic expressions in x): 

To evaluate such types of integrals, we have following substitutions according to the nature of 
expressions of P and Q in x : 

(i) When Q is linear and P is linear or quadratic, we put .2tQ   

(ii) When P is linear and Q is quadratic, we put .
1

t
P   

(iii) When both P and Q are quadratic, we put .
1

t
x   

 


