
Evaluation of the various forms of Integrals by use of Standard 
Results. 

 

(1) Integral of the form  
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dx  where cbxax 2 can not be resolved into factors. 

 

(2) Integral of the form .
2 


dx

cbxax

qpx  

 

(3) Integral of the form .
2

 cbxax

dx  

 

(4) Integral of the form 



.

2
dx

cbxax

qpx  

 

(5) Integral of the form  
,

)(
2

dx
cbxax

xf  where )(xf  is a polynomial of degree 2 or greater than 

2. 
 
 
(6) Integral of the form  

(i) ,
1

1
24

2

dx
xkx

x
 

   

(ii) ,
1

1
24

2

dx
xkx

x
 

 Where k is any constant 

 

(7) Integral of the form dxcbxax 2   

 

(8) Integral of the form dxcbxaxqpx  2)(  

 

(9) Integral of the form  QP

dx  

 



(1) Integrals of the form  
,

cbxax
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 where cbxax 2   cannot be resolved into 

factors. 

We have, 





 

a

c
x

a

b
xacbxax .22



























 

a

c

a

b

a

b
xa

2

22

42



















 







 

2

22

4

4

2 a

acb

a

b
xa  

 
Case (i): When 042  acb  
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Case (ii): When 042  acb  
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Working rule for evaluating   cbxax

dx
2

 :  To evaluate this form of integrals proceed as 

follows : 
(i) Make the coefficient of 2x  unity by taking ‘a’ common from .2 cbxax   
(ii) Express the terms containing 2x  and x  in the form of a perfect square by adding and 
subtracting the square of half of the coefficient of x. 
(iii) Put the linear expression in x equal to t and express the integrals in terms of t. 

(iv) The resultant integrand will be either in   22 ax

dx  or   22 ax

dx or   22 xa

dx  standard form. 

After using the standard formulae, express the results in terms of x. 
 
 

(2) Integral of the form  


dx
cbxax

qpx
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: The integration of the function 
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effected by breaking qpx   into two parts such that one part is the differential coefficient of 

the denominator and the other part is a constant. 

If M and N are two constants, then we express qpx   as  Ncbxax
dx

d
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Comparing the coefficients of x and constant terms on both sides, we have, 
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Thus, M and N are known. Hence, the given integral is 
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The integral on R.H.S. can be evaluated by the method discussed in previous section. 
(i) If ,042  acb  then 
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(ii) If ,042  acb then 
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(3) Integral of the form 
 cbxax

dx
2

 : To evaluate this form of integrals proceed as 

follows : 

(i) Make the coefficient of 2x  unity by taking a common from .2 cbxax   

Then,  
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x 2 , by the method of completing the square in the form, 22 XA   or 

22 AX  or 22 AX   where, X is a linear function of x and A is a constant. 

(iii) After this, use any of the following standard formulae according to the case under 
consideration 
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(4) Integral of the form 



dx
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qpx
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: To evaluate this form of integrals, first we write, 
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Where M and N are constants. 
By equating the coefficients of x and constant terms on both sides, we get 
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In this way, the integral breaks up into two parts given by 
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and 2I  is calculated as in the previous section. 
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(5) Integrals of the form dx,
cbxax

f(x)
 2

where f(x)  is a polynomial of degree 2 or greater 

than 2: 

To evaluate the integrals of the above form, divide the numerator by the denominator. Then, the 

integrals take the form given by dx
cbxax
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where, )(xQ  is  a polynomial and )(xR  is a linear polynomial in x. 
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The integrals on R.H.S. can be obtained by the methods discussed earlier. 

 

 

 

(6) Integrals of the form  
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Then, the given integral reduces to the form  
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Important Tips 
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(7) Integrals of the forms   dxcbxax 2  : To evaluate this form of integrals, express 

cbxax 2  in the form  22)(  xa  by the method of completing the square and apply the 

standard result discussed in the above section according to the case as may be. 
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(8) Integrals of the form   dxcbxaxq)(px 2  : To evaluate this form of integral, 

proceed as follows: 

(i) First express )( qpx  as Ncbxax
dx

d
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Where, M and N are constant. 

 

(ii) Compare the coefficients of x and constant terms on both sides, will get 
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(iv) To evaluate ,1I  put tcbxax 2  and to evaluate ,2I  follows the method discussed in (7) 

 

 

 

 

 



(9) Integrals of the form  QP

dx ,(where P and Q and linear or quadratic expressions in x): 

To evaluate such types of integrals, we have following substitutions according to the nature of 
expressions of P and Q in x : 

(i) When Q is linear and P is linear or quadratic, we put .2tQ   

(ii) When P is linear and Q is quadratic, we put .
1

t
P   

(iii) When both P and Q are quadratic, we put .
1

t
x   

 


