Evaluation of the various forms of Integrals by use of Standard Results.

(1) Integral of the form $\int \frac{d x}{a x^{2}+b x+c}$, where $a x^{2}+b x+c$ can not be resolved into factors.
(2) Integral of the form $\int \frac{p x+q}{a x^{2}+b x+c} d x$.
(3) Integral of the form $\int \frac{d x}{\sqrt{a x^{2}+b x+c}}$.
(4) Integral of the form $\int \frac{p x+q}{\sqrt{a x^{2}+b x}+c} d x$.
(5) Integral of the form $\int \frac{f(x)}{a x^{2}+b x+c} d x$, where $f(x)$ is a polynomial of degree 2 or greater than 2.
(6) Integral of the form
(i) $\int \frac{x^{2}+1}{x^{4}+k x^{2}+1} d x$,
(ii) $\int \frac{x^{2}-1}{x^{4}+k x^{2}+1} d x$, Where k is any constant
(7) Integral of the form $\int \sqrt{a x^{2}+b x+c} d x$
(8) Integral of the form $\int(p x+q) \sqrt{a x^{2}+b x+c} d x$
(9) Integral of the form $\int \frac{d x}{P \sqrt{Q}}$
(1) Integrals of the form $\int \frac{d x}{a x^{2}+b x+c}$, where $a x^{2}+b x+c$ cannot be resolved into factors.
We have, $a x^{2}+b x+c=a\left(x^{2}+\frac{b}{a} \cdot x+\frac{c}{a}\right)=a\left[\left(x+\frac{b}{2 a}\right)^{2}-\left(\frac{b^{2}}{4 a^{2}}-\frac{c}{a}\right)\right]$
$=a\left[\left(x+\frac{b}{2 a}\right)^{2}-\left(\frac{b^{2}-4 a c}{4 a^{2}}\right)\right]$

Case (i): When $b^{2}-4 a c>0$

$$
\begin{aligned}
& \therefore \int \frac{d x}{a x^{2}+b x+c}=\frac{1}{a} \int \frac{d x}{\left(x+\frac{b}{2 a}\right)^{2}-\left(\frac{\sqrt{b^{2}-4 a c}}{2 a}\right)^{2}}, \quad\left[\text { form } \int \frac{d x}{x^{2}-a^{2}}\right] \\
& =\frac{1}{a} \cdot \frac{1}{2 \cdot \frac{\sqrt{b^{2}-4 a c}}{2 a}} \log \left|\frac{x+\frac{b}{2 a}-\frac{\sqrt{b^{2}-4 a c}}{2 a}}{x+\frac{b}{2 a}+\frac{\sqrt{b^{2}-4 a c}}{2 a}}\right|+c=\frac{1}{\sqrt{b^{2}-4 a c}} \log \left|\frac{2 a x+b-\sqrt{b^{2}-4 a c}}{2 a x+b+\sqrt{b^{2}-4 a c}}\right|+c
\end{aligned}
$$

Case (ii): When $b^{2}-4 a c<0$

$$
\begin{aligned}
& \int \frac{d x}{a x^{2}+b x+c}=\frac{1}{a} \int \frac{d x}{\left(x+\frac{b}{2 a}\right)^{2}+\left(\frac{\sqrt{4 a c-b^{2}}}{2 a}\right)^{2}}, \quad\left[\text { form } \int \frac{d x}{x^{2}+a^{2}}\right] \\
& =\frac{1}{a} \cdot \frac{1}{\frac{\sqrt{4 a c-b^{2}}}{2 a}} \tan ^{-1}\left[\frac{x+\frac{b}{2 a}}{\frac{\sqrt{4 a c-b^{2}}}{2 a}}\right]+c=\frac{2}{\sqrt{4 a c-b^{2}}} \tan ^{-1}\left[\frac{2 a x+b}{\sqrt{4 a c-b^{2}}}\right]+c
\end{aligned}
$$

Working rule for evaluating $\int \frac{d \boldsymbol{x}}{\boldsymbol{a} \boldsymbol{x}^{2}+\boldsymbol{b x}+\boldsymbol{c}}$: To evaluate this form of integrals proceed as follows:
(i) Make the coefficient of x^{2} unity by taking ' a^{\prime} ' common from $a x^{2}+b x+c$.
(ii) Express the terms containing x^{2} and x in the form of a perfect square by adding and subtracting the square of half of the coefficient of x.
(iii) Put the linear expression in x equal to t and express the integrals in terms of t.
(iv) The resultant integrand will be either in $\int \frac{d x}{x^{2}+a^{2}}$ or $\int \frac{d x}{x^{2}-a^{2}}$ or $\int \frac{d x}{a^{2}-x^{2}}$ standard form. After using the standard formulae, express the results in terms of x.
(2) Integral of the form $\int \frac{\boldsymbol{p} \boldsymbol{x}+\boldsymbol{q}}{\boldsymbol{a} \boldsymbol{x}^{2}+\boldsymbol{b} \boldsymbol{x}+\boldsymbol{c}} \boldsymbol{d x}$: The integration of the function $\frac{p x+q}{a x^{2}+b x+c}$ is effected by breaking $p x+q$ into two parts such that one part is the differential coefficient of the denominator and the other part is a constant.
If M and N are two constants, then we express $p x+q$ as $\quad p x+q=M \frac{d}{d x}\left(a x^{2}+b x+c\right)+N$ $=M .(2 a x+b)+N=(2 a M) x+M b+N$.

Comparing the coefficients of x and constant terms on both sides, we have, $p=2 a M \Rightarrow M=\frac{p}{2 a}$ and $q=M b+N \Rightarrow N=q-M b=q-\frac{p}{2 a} b$.
Thus, M and N are known. Hence, the given integral is

$$
\begin{aligned}
& \int \frac{p x+q}{a x^{2}+b x+c} d x=\int \frac{\frac{p}{2 a}(2 a x+b)+\left(q-\frac{p}{2 a} b\right)}{a x^{2}+b x+c} d x=\frac{p}{2 a} \int \frac{2 a x+b}{a x^{2}+b x+c} d x+\left(q-\frac{p}{2 a} b\right) \int \frac{d x}{a x^{2}+b x+c} \\
& =\frac{p}{2 a} \log \left|a x^{2}+b x+c\right|+\left(q-\frac{p}{2 a} b\right) \int \frac{d x}{a x^{2}+b x+c}+C
\end{aligned}
$$

The integral on R.H.S. can be evaluated by the method discussed in previous section.
(i) If $b^{2}-4 a c<0$, then

$$
\int \frac{p x+q}{a x^{2}+b x+c} d x=\frac{p}{2 a} \log \left|a x^{2}+b x+c\right|+\frac{(2 a q-b p)}{a \sqrt{4 a c-b^{2}}} \tan ^{-1} \frac{2 a x+b}{\sqrt{4 a c-b^{2}}}+k
$$

(ii) If $b^{2}-4 a c>0$, then

$$
\int \frac{p x+q}{a x^{2}+b x+c} d x=\frac{p}{2 a} \log \left|a x^{2}+b x+c\right|+\frac{(2 a q-b p)}{2 a \sqrt{b^{2}-4 a c}} \log \left|\frac{2 a x+b-\sqrt{b^{2}-4 a c}}{2 a x+b+\sqrt{b^{2}-4 a c}}\right|+k
$$

(3) Integral of the form $\int \frac{d x}{\sqrt{a x^{2}+b x+c}}$: To evaluate this form of integrals proceed as follows :
(i) Make the coefficient of x^{2} unity by taking \sqrt{a} common from $\sqrt{a x^{2}+b x+c}$.

Then, $\int \frac{d x}{\sqrt{a x^{2}+b x+c}}=\frac{1}{\sqrt{a}} \int \frac{d x}{\sqrt{x^{2}+\frac{b}{a} x+\frac{c}{a}}}$.
(ii) Put $x^{2}+\frac{b}{a} x+\frac{c}{a}$, by the method of completing the square in the form, $\sqrt{A^{2}-X^{2}}$ or $\sqrt{X^{2}+A^{2}}$ or $\sqrt{X^{2}-A^{2}}$ where, X is a linear function of x and A is a constant.
(iii) After this, use any of the following standard formulae according to the case under consideration
$\int \frac{d x}{\sqrt{a^{2}-x^{2}}}=\sin ^{-1}\left(\frac{x}{a}\right)+c \Rightarrow \int \frac{d x}{\sqrt{x^{2}+a^{2}}}=\log \left|x+\sqrt{x^{2}+a^{2}}\right|+c$ and
$\int \frac{d x}{\sqrt{x^{2}-a^{2}}}=\log \left|x+\sqrt{x^{2}-a^{2}}\right|+c$.

Note: If $a<0, b^{2}-4 a c>0$, then $\int \frac{d x}{\sqrt{a x^{2}+b x+c}}=\frac{1}{\sqrt{-a}} \sin ^{-1}\left(\frac{2 a x+b}{\sqrt{b^{2}-4 a c}}\right)+k$.
\square If $a>0, b^{2}-4 a c<0$, then $\int \frac{d x}{\sqrt{a x^{2}+b x+c}}=\frac{1}{\sqrt{a}} \sinh ^{-1}\left[\frac{2 a x+b}{\sqrt{4 a c-b^{2}}}\right]+k$
\square If $a>0, b^{2}-4 a c>0 \int \frac{d x}{\sqrt{a x^{2}+b x+c}}=\frac{1}{\sqrt{a}} \cosh ^{-1} \frac{2 a x+b}{\sqrt{b^{2}-4 a c}}+k$
(4) Integral of the form $\int \frac{p x+q}{\sqrt{a x^{2}+b x+c}} d x$: To evaluate this form of integrals, first we write,
$p x+q=M \frac{d}{d x}\left(a x^{2}+b x+c\right)+N \Rightarrow p x+q=M(2 a x+b)+N$
Where M and N are constants.
By equating the coefficients of x and constant terms on both sides, we get
$p=2 a M \Rightarrow M=\frac{p}{2 a}$ and $q=b M+N \Rightarrow N=q-\frac{b p}{2 a}$
In this way, the integral breaks up into two parts given by
$\int \frac{p x+q}{\sqrt{a x^{2}+b x+c}} d x=\frac{p}{2 a} \int \frac{2 a x+b}{\sqrt{a x^{2}+b x+c}} d x+\left(q-\frac{b p}{2 a}\right) \int \frac{d x}{\sqrt{a x^{2}+b x+c}} \quad=I_{1}+I_{2}$, (say)
Now, $I_{1}=\frac{p}{2 a} \int \frac{2 a x+b}{\sqrt{a x^{2}+b x+c}} d x$
Putting $a x^{2}+b x+c \Rightarrow(2 a x+b) d x=d t$, we have,
$I_{1}=\frac{p}{2 a} \int t^{-1 / 2} d t=\frac{p}{2 a} \cdot \frac{t^{1 / 2}}{\frac{1}{2}}+C_{1}=\frac{p}{a} \sqrt{a x^{2}+b x+c}+C_{1}$
and I_{2} is calculated as in the previous section.

Note: $\frac{p x+q}{\sqrt{a x^{2}+b x+c}} d x=\frac{p}{a} \sqrt{a x^{2}+b x+c}+\frac{2 a q-b p}{2 a} \int \frac{d x}{\sqrt{a x^{2}+b x+c}}$.
(5) Integrals of the form $\int \frac{f(x)}{a x^{2}+b x+c} d x$, where $f(x)$ is a polynomial of degree 2 or greater than 2:

To evaluate the integrals of the above form, divide the numerator by the denominator. Then, the integrals take the form given by $\frac{f(x)}{a x^{2}+b x+c}=Q(x)+\frac{R(x)}{a x^{2}+b x+c} d x$
where, $Q(x)$ is a polynomial and $R(x)$ is a linear polynomial in x.
Then, we have $\int \frac{f(x)}{a x^{2}+b x+c} d x=\int Q(x) d x+\int \frac{R(x)}{a x^{2}+b x+c} d x$
The integrals on R.H.S. can be obtained by the methods discussed earlier.
(6) Integrals of the form $\int \frac{x^{2}+1}{x^{4}+k x^{2}+1} d x$ and $\int \frac{\boldsymbol{x}^{2}-1}{x^{4}+\boldsymbol{k} x^{2}+1} d x: \quad$ To evaluate the integral of the form $\quad I=\int \frac{x^{2}+1}{x^{4}+k x^{2}+1} d x$, proceed as follows
(i) Divide the numerator and denominator by x^{2} to get $I=\int \frac{1+\frac{1}{x^{2}}}{x^{2}+k+\frac{1}{x^{2}}} d x$.
(ii) Put $x-\frac{1}{x}=t \Rightarrow\left(1+\frac{1}{x^{2}}\right) d x=d t$ and $x^{2}+\frac{1}{x^{2}}-2=t^{2} \Rightarrow x^{2}+\frac{1}{x^{2}}=t^{2}+2$.

Then, the given integral reduces to the form $I=\int \frac{d t}{t^{2}+2+k}$, which can be integrand as usual.
(iii) To evaluate $I=\int \frac{x^{2}-1}{x^{4}+k x^{2}+1} d x$, we divide the numerator and denominator by x^{2} and get
$I=\int \frac{1-\frac{1}{x^{2}}}{x^{2}+k+\frac{1}{x^{2}}} d x$
Then, we put $x+\frac{1}{x}=t \Rightarrow\left(1-\frac{1}{x^{2}}\right) d x=d t$ and $x^{2}+\frac{1}{x^{2}}+2=t^{2} \Rightarrow x^{2}+\frac{1}{x^{2}}=t^{2}-2$.
Thus, we have $t=\int \frac{d t}{t^{2}-2+k}$, which can be evaluated as usual.

Important Tips

$$
\begin{gathered}
\text { Algebraic twins: } \int \frac{2 x^{2}}{x^{4}+1} d x=\int \frac{x^{2}+1}{x^{4}+1} d x+\int \frac{x^{2}-1}{x^{4}+1} d x \\
\int \frac{2}{x^{4}+1} d x=\int \frac{x^{2}+1}{x^{4}+1} d x-\int \frac{x^{2}-1}{x^{4}+1} d x, \int \frac{2 x^{2}}{x^{4}+1+k x^{2}} d x, \int \frac{2}{\left(x^{4}+1+k x^{2}\right)} d x
\end{gathered}
$$

We know the result of $I_{1}=\int \frac{x^{2}+1}{x^{4}+1} d x$ and $I_{2}=\int \frac{x^{2}-1}{x^{4}+1} d x$, so for $\int \frac{x^{2}}{x^{4}+1} d x$ and for $\int \frac{d x}{x^{4}+1}$, we can use the result of $\frac{I_{1}+I_{2}}{2}$ and $\frac{I_{1}-I_{2}}{2}$.

Trigonometric twins: $\int \sqrt{\tan x} d x, \int \sqrt{\cot x} d x, \int \frac{d x}{\left(\sin ^{4} x+\cos ^{4} x\right)}, \int \frac{d x}{\sin ^{6} x+\cos ^{6} x}$,

$$
\int \frac{ \pm \sin x \pm \cos x}{a+b \sin x \cos } d x
$$

(7) Integrals of the forms $\int \sqrt{\boldsymbol{a} \boldsymbol{x}^{2}+\boldsymbol{b}+\boldsymbol{c}} d \boldsymbol{x}$: To evaluate this form of integrals, express $a x^{2}+b x+c$ in the form $a\left[(x+\alpha)^{2}+\beta^{2}\right]$ by the method of completing the square and apply the standard result discussed in the above section according to the case as may be.

Note: $\int \sqrt{a x^{2}+b x+c} d x=\frac{(2 a x+b) \sqrt{a x^{2}+b x+c}}{4 a}+\frac{4 a c-b^{2}}{8 a} \int \frac{d x}{\sqrt{a x^{2}+b x+c}}$
(8) Integrals of the form $\int(p x+q) \sqrt{a x^{2}+b x+c} d x$: To evaluate this form of integral, proceed as follows:
(i) First express $(p x+q)$ as $p x+q=M \frac{d}{d x}\left(a x^{2}+b x+c\right)+N \Rightarrow p x+q=M(2 a x+b)+N$

Where, M and N are constant.
(ii) Compare the coefficients of x and constant terms on both sides, will get
$p=2 a M \Rightarrow M=\frac{p}{2 a}$ and $q=M b+N \Rightarrow N=q-M b=q-\frac{p}{2 a} b$.
(iii) Now, write the given integral as

$$
\begin{aligned}
& \int(p x+q) \sqrt{a x^{2}+b x+c} d x=\frac{p}{2 a} \int(2 a x+b) \sqrt{a x^{2}+b x+c} d x+\left(q-\frac{p}{2 a} b\right) \int \sqrt{a x^{2}+b x+c} d x \\
= & \frac{p}{2 a} I_{1}+\left(q-\frac{p}{2 a} b\right) I_{2}, \text { (say). }
\end{aligned}
$$

(iv) To evaluate I_{1}, put $a x^{2}+b x+c=t$ and to evaluate I_{2}, follows the method discussed in (7)
(9) Integrals of the form $\int \frac{d x}{P \sqrt{Q}}$,(where P and Q and linear or quadratic expressions in \boldsymbol{x}):

To evaluate such types of integrals, we have following substitutions according to the nature of expressions of P and Q in x :
(i) When Q is linear and P is linear or quadratic, we put $Q=t^{2}$.
(ii) When P is linear and Q is quadratic, we put $P=\frac{1}{t}$.
(iii) When both P and Q are quadratic, we put $x=\frac{1}{t}$.

