Procedure of Curve Sketching.

(1) Symmetry:

(i) Symmetry about *x*-axis: If all powers of y in equation of the given curve are even, then it is symmetric about *x*-axis *i.e.*, the shape of the curve above *x*-axis is exactly identical to its shape below *x*-axis.

For example, $y^2 = 4ax$ is symmetric about *x*-axis.

(ii) Symmetry about y-axis: If all power of x in the equation of the given curve are even, then it is symmetric about y-axis

For example, $x^2 = 4ay$ is symmetric about *y*-axis.

(iii) Symmetry in opposite quadrants or symmetry about origin: If by putting -x for x and -y for y, the equation of a curve remains same, then it is symmetric in opposite quadrants. For example, $x^2 + y^2 = a^2$ and $xy = a^2$ are symmetric in opposite quadrants.

(iv) Symmetry about the line y = x: If the equation of a given curve remains unaltered by interchanging x and y then it is symmetric about the line y = x which passes through the origin and makes an angle of 45[°] with the positive direction of x-axis.

(2) **Origin:** If the equation of curve contains no constant terms then it passes through the origin. Find whether the curve passes through the origin or not.

For examples, $x^2 + y^2 + 4ax = 0$ passes through origin.

(3) **Points of intersection with the axes:** If we get real values of *x* on putting y = 0 in the equation of the curve, then real values of *x* and y = 0 give those points where the curve

cuts the *x*-axis. Similarly by putting x = 0, we can get the points of intersection of the curve and *y*-axis.

For example, the curve $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ intersect the axes at points $(\pm a, 0)$ and $(0, \pm b)$.

(4) **Special points:** Find the points at which $\frac{dy}{dx} = 0$, at these points the tangent to the curve is parallel to *x*-axis. Find the points at which $\frac{dx}{dy} = 0$. At these points the tangent to the curve is parallel to *y*-axis.

(5) **Region:** Write the given equation as y = f(x), and find minimum and maximum values of x which determine the region of the curve.

For example for the curve $xy^2 = a^2(a - x) \Rightarrow y = a\sqrt{\frac{a - x}{x}}$

Now y is real, if $0 \le x \le a$, So its region lies between the lines x = 0 and x = a

(6) **Regions where the curve does not exist:** Determine the regions in which the curve does not exists. For this, find the value of y in terms of x from the equation of the curve and find the value of x for which y is imaginary. Similarly find the value of x in terms of y and determine the values of y for which x is imaginary. The curve does not exist for these values of x and y. For example, the values of y obtained from $y^2 = 4ax$ are imaginary for negative value of x, so the curve does not exist on the left side of y-axis. Similarly the curve $a^2y^2 = x^2(a-x)$ does not exist for x > a as the values of y are imaginary for x > a.