Sketching of Some Common Curves.

(1) Straight line: The general equation of a straight line is $a x+b y+c=0$. To draw a straight line, find the points where it meets with the coordinate axes by putting $y=0$ and $x=0$ respectively in its equation. By joining these two points, we get the sketch of the line.
(2) Region represented by a linear inequality: To find the region represented by linear inequalities $a x+b y \leq c$ and $a x+b y \geq c$, we proceed as follows.
(i) Convert the inequality into equality to obtain a linear equation in x, y.
(ii) Draw the straight line represented by it.
(iii)The straight line obtained in (ii) divides the $x y$-plane in two parts. To determine the region represented by the inequality choose some convenient points, e.g. origin or some point on the coordinate axes. If the coordinates of a point satisfy the inequality, then region containing the point is the required region, otherwise the region not containing the point is the required region.
(3) Circle: The equation of a circle having center at $(0,0)$ and radius r is given by $x^{2}+y^{2}=r^{2}$. The equation of a circle having center at (h, k) and radius r is given by $(x-h)^{2}+(y-k)^{2}=r^{2}$. The general equation of a circle is

$x^{2}+y^{2}+2 g x+2 f y+c=0$. This represents the circle whose center is at $(-g,-f)$ and radius equal to $\sqrt{g^{2}+f^{2}-c}$.

The figure of the circle $x^{2}+y^{2}=(2)^{2}$ is given. Here center is $(0,0)$ and radius is 2 .
(4) Parabola: There are four standard forms of parabola with vertex at origin and the axis along either of coordinate axis.
(i) $y^{2}= \pm 4 a x$: For this parabola
(a) Vertex: $(0,0)$
(b) Focus: $(\pm a, 0)$
(c) Directrix: $x \pm a=0$
(d) Latus rectum: $4 a$
(e) Axis $y=0$ (f) Symmetry: It is symmetric about x-axis.

(ii) $x^{2}= \pm 4 a y$:For this parabola
(a) Vertex: $(0,0)$
(b) Focus: $(0, \pm a)$
(c) Directrix: $y \pm a=0$ (d) Latus rectum: $4 a$
(e) Axis $x=0$
(f) Symmetry: It is symmetric about y-axis
(5) Ellipse: The standard equation of the ellipse having its center at the origin and major and minor axes along the coordinate axes is $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ Here $a>b$. The figure of the ellipse is given.

