Area of Bounded Regions.

(1) The area bounded by a Cartesian curve $y=f(x), x$-axis and ordinates $x=a$ and $x=b$ is given by
Area $=\int_{a}^{b} y d x=\int_{a}^{b} f(x) d x$

(2) If the curve $y=f(x)$ lies below x-axis, then the area bounded by the curve $y=f(x)$, the x-axis and the ordinates $x=a$ and $x=b$ is negative. So, area is given by $\left|\int_{a}^{b} y d x\right|$
(3)The area bounded by a Cartesian curve $x=f(y), y$-axis and abscissa $y=c$ and $y=d$ is given by

$$
\text { Area }=\int_{c}^{d} x d y=\int_{c}^{d} f(y) d y
$$

(4) If the equation of a curve is in parametric form, say $x=f(t), y=g(t)$ then the area $=\int_{a}^{b} y d x=\int_{t_{1}}^{t_{2}} g(t) f^{\prime}(t) d t$ where t_{1} and t_{2} are the values of t respectively corresponding to the values of a and b of x.

