Sign convention for finding the Areas using Integration.

While applying the discussed sign convention, we will discuss the three cases.

Case I: In the expression $\int_{a}^{b} f(x) d x$ if $b>a$ and $f(x)>0$ for all $a \leq x \leq b$, then this integration will give the area enclosed between the curve $f(x), x$-axis and the line $x=a \operatorname{and} x=b$ which is positive. No need of any modification.

Case II: If in the expression $\int_{a}^{b} f(x) d x$ if $b>a$ and $f(x)<0$ for all $a \leq x \leq b$, then this integration will calculate to be negative. But the numerical or the absolute value is to be taken to mean the area enclosed between the curve $\quad y=f(x), x$-axis and the lines $x=a$ and $x=b$.

Case III: If in the expression $\int_{a}^{b} f(x) d x$ where $b>a$ but $f(x)$ changes its sign a numbers of times in the interval $a \leq x \leq b$, then we must divide the region $[a, b]$ in such a way that we clearly get the points lying between [a, b] where $f(x)$ changes its sign. For the region where $f(x)>O$ we just integrate to get the area in that region and then add the absolute value of the integration calculated in the region where $f(x)<0$ to get the desired area between the curve $y=f(x), x$-axis
 and the line $x=a$ and $x=b$.
Hence, if $f(x)$ is as in above figure, the area enclosed by $y=f(x), x$-axis and the lines $x=a$ and $x=$ b is given by
$A=\int_{a}^{c} f(x) d x+\left|\int_{c}^{d} f(x) d x\right|+\int_{d}^{e} f(x) d x+\left|\int_{e}^{f} f(x) d x\right|+\int_{f}^{b} f(x) d x$

