Area between Two curves.

(1) When both curves intersect at two points and their common area lies between these points:

If the curves $y_1 = f_1(x)$ and $y_2 = f_2(x)$, where $f_1(x) > f_2(x)$ intersect in two points A(x = a) and B(x = b), then common area between the curves is $= \int_a^b (y_1 - y_2) dx$ $= \int_a^b [f_1(x) - f_2(x)] dx$

(2) When two curves intersect at a point and the area between them is bounded by *x*-axis:

Area bounded by the curves $y = f_1(x), y_2 = f_2(x)$ and x - axis is

 $= \int_{a}^{\alpha} f_{1}(x) dx + \int_{\alpha}^{b} f_{2}(x) dx$

Where $P(\alpha, \beta)$ is the point of intersection of the two curves.

(3) **Positive and negative area :**Area is always taken as positive. If some part of the area lies above the *x*-axis and some part lies below *x*-axis, then the area of two parts should be calculated separately and then add their numerical values to get the desired area.

Important Tips

The area of the region bounded by $y^2 = 4ax$ and $x^2 = 4by$ is $\frac{16ab}{3}$ square units. The area of the region bounded by $y^2 = 4ax$ and y = mx is $\frac{8a^2}{3m^3}$ square units The area of the region bounded by $y^2 = 4ax$ and its latus rectum is $\frac{8a^2}{3}$ square units

0 | x = a

The area of the region bounded by one arch of sin (ax) or cos (ax) and x-axis is $\frac{2}{a}$ sq. units

Area of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is πab sq. units.

Area of region bounded by the curve $y = \sin x$, x-axis and the line x = 0 and $x = 2\pi$ is 4 unit.